• Title/Summary/Keyword: human HepG2 cells

Search Result 440, Processing Time 0.028 seconds

Biological Activities of Soybean Sauce (Kanjang) Supplemented with Deep Sea Water and Sea Tangle (해양심층수 및 다시마 분말을 첨가하여 제조한 간장의 생리활성 효과)

  • Ham, Seung-Shi;Kim, Soo-Hyun;Yoo, Su-Jong;Oh, Hyun-Taek;Choi, Hyun-Jin;Chung, Mi-Ja
    • Food Science and Preservation
    • /
    • v.15 no.2
    • /
    • pp.274-279
    • /
    • 2008
  • This study investigated the antimutagenic and anticancer effects of soybean sauce (kanjang) supplemented with deep sea water and Sea Tangle. The Ames test indicated that kanjang had no mutagenicity but it significantly inhibited mutations induced by N-methyl-N'-nitro-N-nitrosoguanidine(MNNG) and 4-nitroquinoline-1-oxide (4NQO). Kanjang (200 ug/plate) with supplementary deep sea water and Sea Tangle had approximately 90.9% and 62.0% inhibitory effect, respectively, against mutagenesis of TA100 induced by MNNG and 4NQO. There was 61.7% inhibition of mutagenesis induced by 4NQO against the TA98 strain. Kanjang inhibited growth of cell lines of human cervical adenocarcinoma (HeLa), human hepatocellular carcinoma (Hep3B), human gastric carcinoma (AGS), human lung carcinoma (A549), and human breast adenocarcinoma (MCF-7) in a concentration-dependent manner. Treatment with kanjang supplemented with 1.0 mg/mL deep sea water had cytotoxicities of 69.4% 70.5% 55.6% 82.1 % and 73.2% against HeLa, Hep3B, AGS, A549 and MCF-7 cells respectively. In contrast kanjang supplemented with 1 mg/mL deep sea water had only $10{\sim}40%$ cytotoxicity on normal human embryonal kidney cells (293). Kanjang supplemented with deep sea water significantly inhibited tumor growth in mice injected sarcoma-180 cells. In particular, kanjang supplemented with deep sea water (25 mg/kg) inhibited tumor cell activity by 40.9%.

Radiation-induced Apoptosis, Necrosis and G2 Arrest in Fadu and Hep2 Cells

  • Lee Sam-Sun;Kang Beom-Hyun;Choi Hang-Moon;Jeon In-Seong;Heo Min-Suk;Choi Soon-Chul
    • Imaging Science in Dentistry
    • /
    • v.30 no.4
    • /
    • pp.275-279
    • /
    • 2000
  • Purpose: Radiation damage is produced and viable cell number is reduced. We need to know the type of cell death by the ionizing radiation and the amount and duration of cell cycle arrest. In this study, we want to identified the main cause of the cellular damage in the oral cancer cells and normal keratinocytes with clinically useful radiation dosage. Materials and Methods: Human gingival tissue specimens obtained from healthy volunteers were used for primary culture of the normal human oral keratinocytes (NHOK). Primary NHOK were prepared from separated epithelial tissue and maintained in keratinocyte growth medium containing 0.15 mM calcium and a supplementary growth factor bullet kit. Fadu and Hep-2 cell lines were obtained from KCLB. Cells were irradiated in a /sup 137/Cs γ-irradiator at the dose of 10 Gy. The dose rate was 5.38 Gy/min. The necrotic cell death was examined with Lactate Dehydrogenase (LDH) activity in the culture medium. Every 4 day after irradiation, LDH activities were read and compared control group. Cell cycle phase distribution and preG1-incidence after radiation were analyzed by flow cytometry using Propidium Iodine staining. Cell cycle analysis were carried out with a FAC Star plus flowcytometry (FACS, Becton Dickinson, USA) and DNA histograms were processed with CELLFIT software (Becton Dickinson, USA). Results: LDH activity increased in all of the experimental cells by the times. This pattern could be seen in the non-irradiated cells, and there was no difference between the non-irradiated cells and irradiated cells. We detected an induction of apoptosis after irradiation with a single dose of 10 Gy. The maximal rate of apoptosis ranged from 4.0% to 8.0% 4 days after irradiation. In all experimental cells, we detected G2/M arrest after irradiation with a single dose of 10 Gy. Yet there were differences in the number of G2/M arrested cells. The maximal rate of the G2/M ranges from 60.0% to 80.0% 24h after irradiation. There is no significant changes on the rate of the G0/G1 phase. Conclusion: Radiation sensitivity was not related with necrosis but cell cycle arrest and apoptosis. These data suggested that more arrested cell is correlated with more apoptosis.

  • PDF

Various Fatty Acids Induce Cell Damages Differently in CYP2E1-transduced HepG2 Cells, E47 Cells, Compared to C34 Cells

  • Lee, Myoung-Sook;Bae, Myung-Ae
    • Nutritional Sciences
    • /
    • v.9 no.1
    • /
    • pp.9-13
    • /
    • 2006
  • The differential effects of various fatty acids such as n-3 and n-6 types or degrees of unsaturation on the CYP2E1 induction and the production of lipid peroxidation (LPO) were investigated. The CYP2E1-transduced human hepatoma HepG2 cells (E47) were cultured in RPMI 1640 media containing different concentrations of various fatty acids up to 48 h incubation compared to 04 cells and CYP2E1-null cells. Treated fatty acids were linoleic acid (LA:n-6, C18:2), arachidonic acid (AA:n-6, C20:4) and docosahexaenoic acid (DHA:n-3, C22:6). The cell survival rate was decreased corresponding to the degree of unsaturation (LA>AA $\cong$DHA) and to LPO production in E47 and 04 cells. The four or five unsaturation degree of fatty acids, AA and DHA, caused time- and dose-dependent cell death in E47 cells but not as much as in C34 (without CYP2E1), suggesting an important role of CYP2E1 in the DHA mediated damage. In the levels of lipid peroxides (LPO), AA also elevated LPO by 3- and 5- fold compared to DHA or LA treated E47 cells. However, AA did not increase LPO until 48 h incubation in C34 cells. In conclusion, the polyunsaturated fatty acids induced CYP2E1 induction might be changed by the elevated levels of lipid peroxide (LPO) and oxidative stress through the connection of CYP2E1 and degrees of unsaturated fatty acids.

Determination of Bioactive Compounds and Anti-cancer Effect from Extracts of Korean Cabbage and Cabbage (배추와 양배추 추출물의 생리활성 물질 및 암세포 증식 억제효과 분석)

  • Hwang, Eun-Sun;Hong, Eun-Young;Kim, Gun-Hee
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.2
    • /
    • pp.259-265
    • /
    • 2012
  • In this study, we determined total polyphenol content(TPC) and total flavonoid content(TFC) of extracts from Korean cabbage and cabbage using a spectrophotometric method as well as glucosinolates concentration by HPLC. TPCs of Korean cabbage and cabbage extracts were 308.48 ${\mu}g$ GAE/g dry weight and 344.75 ${\mu}g$ GAE/g dry weight, respectively. TFCs of Korean cabbage and cabbage extracts were 5.33 ${\mu}g$ QE/g dry weight and 5.95 ${\mu}g$ QE/g dry weight, respectively. We found six different glucosinolates, namely progoitrin, glucoalyssin, gluconapin, glucobrassicanapin, glucobrassicin and 4-methoxyglucobrassicin in the Korean cabbage extract. In the cabbage extract, there was four glucosinolates, namely glucoraphanin, sinigrin, glucobrassicin and 4-methoxyglucobrassicin. We determined the cytotoxic effect of Korean cabbage and cabbage extracts in AGS human stomach cancer cells, HepG2 human hepatic cancer cells and LNCaP human prostate cancer cells by MTT assay. Dose-dependent relationships were found between the extract concentrations and cancer cell growth inhibition. The overall results support that both Korean cabbage and cabbage, the major vegetables in Korea, contain bioactive compounds such as polypheol, flavonoids as well as glucosinolates and they may play a positive role in cancer prevention.

Effects of Adenophora triphylla Ethylacetate Extract on mRNA Levels of Antioxidant Enzymes in Human HepG2 Cells (인간 HepG2 Cell에서 항산화 효소의 mRNA 발현에 대한 잔대 에틸아세테이트 추출물 효과)

  • Choi, Hyun-Jin;Kim, Soo-Hyun;Oh, Hyun-Taek;Chung, Mi-Ja;Cui, Cheng-Bi;Ham, Seung-Shi
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.10
    • /
    • pp.1238-1243
    • /
    • 2008
  • The root of Adenophora triphylla is widely used as traditional herbal medicine in Korea. We studied its effects on sodium nitroprusside (SNP) cytotoxicity and antioxidant genes expression in HepG2 cells. To study whether Adenophora triphylla ethylacetate extract (ATea) inhibited NO-induced cell death, HepG2 cells were preincubated for 24 hr with 50 and 100 $\mu$g/mL ATea followed by 24-hr exposure to 0.5 mM SNP (exogenous NO donor). No-induced cytotoxicity was inhibited by pretreatment of ATea, as assessed by mitochondrial dehydrogenase activity (MTT assay). We further investigated the effects of ATea on mRNA levels of various enzymes of the antioxidant system such as Cu, Zn superoxide dismutase (SOD 1), Mn SOD (SOD 2), glutathione peroxidase (GPx), catalase and several enzymes of the glutathione metabolism [glutathione reductase (GR), $\gamma$-glutamyl-cystein synthetase (GCS), glutathione-S-transferase (GST), $\gamma$-glutamyltranspeptidase ($\gamma$-GT), glucose-6-phosphate dehydrogenase (G6PD)] by RT-PCR. CAT, GCS, GR and G6PD mRNA levels were increased after treatment with ATea. The SOD 1, SOD 2, GPx, GST and $\gamma$-GT mRNA levels were not affected in ATea-treated HepG2 cells. We concluded that ATea have an indirect antioxidant effects, perhaps via induction of CAT, GCS, GR and G6PD.

Production and Characterization of Porcine Cell Lines Overexpressing Human H-Transferase (사람 H-Transferase 유전자 과발현 형질전환 체세포주 확립 및 검증)

  • Lee, Sang-Mi;Park, Hyo-Young;Kim, Hey-Min;Moon, Seung-Ju;Kang, Man-Jong
    • Reproductive and Developmental Biology
    • /
    • v.31 no.3
    • /
    • pp.187-191
    • /
    • 2007
  • This study was canted out to develop cell lines overexpressing human H-transferase (HT). One of the approaches to prevent hyperacute rejection in xenotransplantation might be the expression of human HT in porcine cells. In this study, we cloned human HT gene from HepG2 cells using RT-PCR to establish HT-overexpressing vector. The full-length cDNA of human HT was inserted into the 3' end of CMV promoter for construction of the overexpression vector pRc/CMV-hHT. Using ietPEI DNA transfection reagent, the vector was introduced into porcine ear skin fibroblasts from newborn piglets. Transfected cells were selected by treatment of $300{\mu}g/ml$ G418 for 12 days. After antibiotic selection, survived colonies with approximately 5mm in diameter were picked and analysed for transgene human HT by PCR. The colonies proven to be human HT transfectants were analysed by RT-PCR to determine their expressions or human HT. In all colonies tested, human HT mRNA was detected. This result demonstrates the establishment of porcine cell lines overexpressing human HT, and these cell lines may be used for the development of transgenic pigs for xenotransplantation.

Inhibitory Effect of Methanol Extracts and Solvent Fractions from Meju on Mutagenicity and Growth of Human Cancer Cells (메주 메탄올 추출물 및 분획물의 항돌연변이 및 인체 암세포 성장 억제 효과)

  • Lim, Sun-Young;Park, Kun-Young;Lee, Sook-Hee;Choi, Jae-Soo
    • Journal of Life Science
    • /
    • v.17 no.1 s.81
    • /
    • pp.76-81
    • /
    • 2007
  • Inhibitory effects of methanol extracts and several solvent fractions from meju on mutagenicity in vitro genotoxicity (SOS chromotest) and growth of human cancer cells (AGS gastric adenocarcinoma and Hep 3B hepatocellular cancinoma cells) were studied. The treatment of meju methanol extracts $(100{\mu}g/assay)$ to SOS chromotest system inhibited N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) induced mutagenicity by 36%. However, the ethylacetate and dichloromethane fractions from meju methanol extracts showed the stronger antimutagenic effects (91% and 91%, respectively) in SOS chromotest. In sulforhodamine B (SRB) assay, the treatments of ethylacetate and dichloromethane fractions (2 mg/assay) significantly inhibited the growth of AGS and Hep 3B cancer cells by 64% and 71%, respectively. These results indicated that meju had inhibitor)r effects on MNNG in SOS mutagenic system and growth of human cancer cells, suggesting that its antimutagenic effect may be relative to activity of doenjang.

Physiological Activities of Opuntia humifusa Petal (천년초 꽃잎의 생리활성)

  • Jung, Bok-Mi;Shin, Mi-Ok
    • Korean journal of food and cookery science
    • /
    • v.27 no.5
    • /
    • pp.523-530
    • /
    • 2011
  • This study was conducted to investigate antimicrobial, antioxidant and anticancer activities of Opuntia humifusa (OH) petal extracts. The methanol and hexane extracts of OH petals showed their highest antimicrobial activity against Clostridium perfringens. The OH petal butanol fraction had the best antioxidative peroxynitrite scavenging activity among OH petal extracts. The DPPH scavenging activity of OH petals was lower than the peroxynitrite scavenging effect. The hexane and methanol fractions at a concentration of 200 ${\mu}g$/mL inhibited proliferation >80% in four kinds of human cervical cancer cells(B16F10, HepG2, HT-29 and MCF-7). In particular, the anticancer effect against B16F10 human skin cancer cells at the same concentration was higher than that in the other cancer cells.

Analysis of Antibacterial Activity against Food Spoilage and Food-borne Pathogens and Cytotoxicity on Human Cancer Cell Lines of Extracts from Pericarp and Seed of Vitis coignetiea (머루 과피와 종자 추출물의 식품 위해성 세균에 대한 항균성 및 인체 암세포주에 대한 cytotoxicity 분석)

  • Won, Ji-Hye;Kim, Mee-Ra
    • Korean journal of food and cookery science
    • /
    • v.28 no.2
    • /
    • pp.175-182
    • /
    • 2012
  • In this study, antibacterial activity and cytotoxicity of the extracts from pericarp and seed of $Vitis$ $coignetiea$, which were extracted with 0.1% HCl-60% ethanol, were analyzed. The antibacterial activity of the extracts was determined by paper disc diffusion method against food spoilage and food-borne pathogens. The pericarp extract showed high antibacterial activity against $Bacillus$ $cereus$, $Escherichia$ $coli$ O157:H7, and $Pseudomonas$ $aeruginosa$, and the seed extract represented the high antibacterial activity against $B.$ $cereus$, $E.$ $coli$ O157:H7, and $Staphylococcus$ $aureus$. The cytotoxicity of the $Vitis$ $coignetiea$ extract against human cancer cells was determined using the MTT assay and SRB assay. The pericarp extract represented strong growth-inhibition activity against G361 and Hep3B cells and the seed extract greatly inhibited the growth of HeLa and G361 cells in the MTT assay. In addition, the pericarp extract displayed a high inhibition activity against the growth of AGS cells and the seed extract greatly inhibited the growth of HeLa, Hep3B, and MCF7 cells in the SRB assay. Especially, the cytotoxicities of the seed extract against HeLa were significantly higher than those of the extract against other cancer cells at all test concentrations. This study demonstrates that the extract from pericarp and seed of $Vitis$ $coignetiea$ possess high antibacterial activity and cytotoxicity.

Conversion of Apricot Cyanogenic Glycosides to Thiocyanate by Liver and Colon Enzymes

  • Lee, Ji-Yeon;Kwon, Hoon-Jeong
    • Toxicological Research
    • /
    • v.25 no.1
    • /
    • pp.23-28
    • /
    • 2009
  • Some of the edible plants like apricot kernel, flaxseed, and cassava generate hydrogen cyanide (HCN) when cyanogenic glycosides are hydrolyzed. Rhodanese (thiosulfate: cyanide sulfurtransferases of TSTs; EC: 2.8.1.1) is a sulfide-detoxifying enzymes that converts cyanides into thiocyanate and sulfite. This enzyme exists in a liver and kidneys in abundance. The present study is to evaluate the conversion of apricot cyanogenic glycosides into thiocyanate by human hepatic (HepG2) and colonal (HT-29) cells, and the induction of the enzymes in the rat. The effects of short term exposure of amygdalin to rats have also been investigated. Cytosolic, mitochondrial, and microsomal fractions from HepG2 and HT-29 cells and normal male Spraque-Dawley rats were used. When apricot kernel extract was used as substrate, the rhodanese activity in liver cells was higher than the activity in colon cells, both from established human cell line or animal tissue. The cytosolic fractions showed the highest rhodanese activity in all of the cells, exhibiting two to three times that of microsomal fractions. Moreover, the cell homogenates could metabolize apricot extract to thiocyanate suggesting cellular hydrolysis of cyanogenic glycoside to cyanide ion, followed by a sulfur transfer to thiocyanate. After the consumption of amygdalin for 14 days, growth of rats began to decrease relative to that of the control group though a significant change in thyroid has not been observed. The resulting data support the conversion to thiocyanate, which relate to the thyroid dysfunction caused by the chronic dietary intake of cyanide. Because Korean eats a lot of Brassicaceae vegetables such as Chinese cabbage and radish, the results of this study might indicate the involvement of rhodanese in prolonged exposure of cyanogenic glycosides.