• Title/Summary/Keyword: hull structural analysis

Search Result 209, Processing Time 0.023 seconds

Structural Strength and Fatigue Strength Assessment for Fore/Aft Cargo Hold of 60m Beam VLCC (60m Beam VLCC Fore/Aft Cargo Hold에 대한 구조 안정성 및 피로강도 평가)

  • Lee Sang-Woo;Choi J.H.;Kim M.S.;Kim M.S.;Lee Y.M.;Kim K.S.
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.84-89
    • /
    • 2005
  • The double hull VLCC(Very Large Crude Oil Tanker) have been designed to have each four(4) longitudinal bulkheads and transverse bulkheads in general. Actually, the inside longitudinal bulkheads among four(4) longitudinal bulkheads, which are extended up to the end of the aft cargo hold for continuity of the members, have been designed with knuckled type inboard due to the narrowed hull shape at bottom region, but sometimes the straight type of longitudinal bulkheads were adopted based on the degree of the hull lines shape. However, regardless the type of longitudinal bulkheads, inside and outside longitudinal bulkheads conflict each other in aft cargo hold region This makes the structure more complex thus giving difficulties to structural design and production. Recently, a vessel of straight type was reported to have cracks on bracket end and tripping bracket toe in aft cargo hold region. As a solution to this problem, in designing the first 60m Beam VLCC, DSME developed a new cargo hold structure which is good in production and structural point of view by structural strength and fatigue analysis of fore and aft cargo hold.

  • PDF

Transverse vibration reduction at navigation bridge deck of the shuttle tanker using structural intensity analysis (진동 인텐시티 해석을 통한 원유운반선의 거주구 횡방향 진동 저감 연구)

  • Kim, Ki-Sun;Kim, Heui-Won;Joo, Won-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.251-255
    • /
    • 2012
  • Structural intensity has been mainly utilized to identify vibration energy flow in a vessel. In this paper, the structural intensity of a shuttle tanker subjected to H-moment of the main engine was calculated using a finite element model. From the analysis, it was found that the top-bracing elements, which support the main engine onto the hull structure to prevent the excessive transverse vibration of the main engine, play the role of the dominant path and sink for vibration energy flow from the main engine. Therefore, the structural intensity was controlled by the modification of stiffness and damping characteristics of the top-bracing elements. As a result, it is observed that the transverse vibration level at the center of navigation bridge deck decreased after the control of structural intensity.

  • PDF

Collision Strength Analysis of Double Hull Tanker (이중선체(二重船體) 유조선(油槽船)의 충돌강도해석(衝突强度解析))

  • J.K. Paik;P.T. Pedersen
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.103-117
    • /
    • 1995
  • A design-oriented method for analysis of the structural damage due to ship collisions is developed by using the idealized structural unit method(ISUM). The method takes into account yielding, crushing, rupture, the coupling effects between local and global failure of the structure, the influence of strain-rate sensitivity and the gap/contact conditions. The method is verified by a comparison of experimetal and numerical results obtained from test models of double-skin plated structures in collision/grounding situations with the present solutions. As an illustrative example, the method has been used for analyses of a side collision of a double-hull tanker. Several factors affecting ship collision response. namely the collision speed and the scantlings/arrangements of strength members, are discussed.

  • PDF

Influence of failed blade-pitch-control system to FOWT by aero-elastic-control-floater-mooring coupled dynamic analysis

  • Bae, Yoon Hyeok;Kim, Moo-Hyun
    • Ocean Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.295-307
    • /
    • 2013
  • More FOWTs (floating offshore wind turbines) will be installed as relevant regulations and technological hurdles are removed in the coming years. In the present study, a numerical prediction tool has been developed for the fully coupled dynamic analysis of FOWTs in time domain including aero-loading, tower elasticity, blade-rotor dynamics and control, mooring dynamics, and platform motions so that the influence of rotor-control dynamics on the hull-mooring performance and vice versa can be assessed. The developed coupled analysis program is applied to Hywind spar design with 5 MW turbine. In case of spar-type floaters, the control strategy significantly influences the hull and mooring dynamics. If one of the control systems fails, the entire dynamic responses of FOWT can be significantly different. Therefore, it is important to maintain various control systems in a good operational condition. In this regard, the effects of failed blade pitch control system on FOWT performance including structural and dynamic responses of blades, tower, and floater are systematically investigated. Through this study, it is seen that the failure of one of the blade pitch control system can induce significant dynamic loadings on the other blades and the entire FOWT system. The developed technology and numerical tool are readily applicable to any types of floating wind farms in any combinations of irregular waves, dynamic winds, and steady currents.

Structural intensity analysis of a large container carrier under harmonic excitations of propulsion system

  • Cho, Dae-Seung;Kim, Kyung-Soo;Kim, Byung-Hwa
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.2
    • /
    • pp.87-95
    • /
    • 2010
  • The structural intensity analysis, which calculates the magnitude and direction of vibrational energy flow from vibratory velocity and internal force at any point of a structure, can give information on dominant transmission paths, positions of sources and sinks of vibration energy. This paper presents a numerical simulation system for structural intensity analysis and visualization to apply for ship structures based on the finite element method. The system consists of a general purpose finite element analysis program MSC/Nastran, its pre- and post-processors and an in-house program module to calculate structural intensity using the model data and its forced vibration analysis results. Using the system, the structural intensity analysis for a 4,100 TEU container carrier is carried out to visualize structural intensity fields on the global ship structure and to investigate dominant energy flow paths from harmonic excitation sources to superstructure at resonant hull girder and superstructure modes.

Development of Engine/Rotor Vibration Analysis and Monitoring System(EVAMOS) for Marine Vessels (선박용 엔진/회전체 진동 분석 및 모니터링 시스템(EVAMOS) 개발에 관하여)

  • Lee, D.C.;Joo, G.S.;Nam, T.K.;Kim, E.S.;Kim, S.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.331-336
    • /
    • 2008
  • Engine builders have separately developed and applied torsional, axial and structural vibration monitoring system on most marine engines. These systems displayed their results for engine or ship operation engineers and were not regularly stored at the hardware of computer. So, tile history and trend of various engine and hull vibrations was not supported for preventive maintenance and to protect the failure of these activity or function. The integrated vibration or stress monitoring system(EVAMOS : Engine/Rotor Analysis and monitoring System) in marine diesel engine, its machineries and hull have been developed by the dynamics laboratory of Mokpo Maritime University during last 3 years. This paper introduces tile design conception and ability of commercial software EVAMOS with field data on several actual tests.

  • PDF

On the Fatigue Analysis of Large Crane Pedestal in Drillship (드릴십의 대형 크레인 페데스털의 피로해석에 관한 연구)

  • Lee, Jeong-Hoon;Lee, Joo-Sung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.4
    • /
    • pp.342-345
    • /
    • 2011
  • Drillship has several large cranes to handle the various equipments for drilling work. These cranes are supported by crane pedestals which are installed on main deck. Two major loads, i.e., hull girder bending moment and crane operation loading shall be considered to confirm the structural strength in way of crane pedestal. In this paper, the fatigue analysis is performed for the structures in way of crane pedestal considering two(2) loads as mentioned in the above is introduced.

Review of the Structural Shape for Aft Transition Ring of Submarine (잠수함 함미 트랜지션 링 구조 형상에 대한 고찰)

  • Oh, Dohan;Ahn, Namhyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.936-944
    • /
    • 2019
  • Submarines, which have been called an invisible force, are strategic underwater weapon systems that perform missions such as anti-surface warfare, anti-submarine warfare, and high payoff target strikes with the advantage of underwater covertness. A submarine should be able to withstand the hydrostatic pressure of the deep sea. In this respect, the submarine pressure hull, as the main structural system to resist the external pressure corresponding to the submerged depth, should ensure the survivability from hazards and threats such as leakage, fires, shock, explosion, etc. To do this, the initial scantling of the submarine pressure hull must be calculated appropriately in the concept design phase. The shape of the aft transition ring varies according to its connection with the submarine aft end conical structure, pressure hull cylindrical part, and non-pressure hull of the submarine; the design of the aft transition ring should not only take into account stress flow and connectivity but also the cost increase due to the increased man-hours of its complex geometry. Therefore, trade-off studies based on the four different shapes of the aft transition ring are carried out considering both the review of the structural strength through nonlinear finite element analysis (FEA) and economic feasibility by reviewing the estimations of the manufacturing working days and material costs. Finally, the most rational structural aft transition ring shape for a submarine amongst four reviewed types was proposed.

Analysis on the Structual Response of Ship Structures Subjected to Slamming Impact (Slamming충격으로 인한 선체의 구조적 응답해석)

  • Goo, Ja-Sam;Hong, Bong-Ki
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.21 no.1
    • /
    • pp.67-74
    • /
    • 1985
  • This paper describes a method for evaluating the vertical hull girder vibratory response associated with slamming of a ship at sea. The ship hull is considered as a nonuniform beam divided into twenty equal sections. Impact forces and structural parameters are used as input quantities on the computer (PRIME 550-II) to obtain the hull girder response in terms of relative displacements, accelerations, bending moments, shear forces, and stresses. Sample calculations are made on a MARINER-Class hull form using first three modes and again using first ten modes and again using first ten modes. The computed response is compared with Antonides's result in order to evaluate the adequacy of the method employed. It is believed that the method is another noticeable one to obtain whipping stresses of a ship to a seaway.

  • PDF

Condition assessment of raking damaged bulk carriers under vertical bending moments

  • Kim, Do Kyun;Yub, Su Young;Choi, Han Suk
    • Structural Engineering and Mechanics
    • /
    • v.46 no.5
    • /
    • pp.629-644
    • /
    • 2013
  • This paper concerns about the raking damages on the ultimate residual hull girder strength of bulk carriers by applying the modified R-D diagram (advanced method). The limited raking damage scenarios, based on the IMO's probability density function of grounding accidents, were carried out by using sampling technique. Recently, innovative method for the evaluation of the structural condition assessment, which covers the residual strength and damage index diagram (R-D diagram), was proposed by Paik et al. (2012). This concept is applied in the present study and modified R-D diagram, which can be considered vessel size effect, is then proposed. Four different types of bulk carrier structures, i.e., Handysize (37K), Supramax (57K), Kamsarmax (82K) and Capesize (181K) by Common Structural Rule (CSR), were applied to draw the general tendency. The ALPS/HULL, intelligent supersize finite element method, was employed for the ultimate longitudinal strength analysis. The obtained empirical formulas will be useful for the condition assessment of bulk carrier structures. It can also cover different sizes of the bulk carriers in terms of ultimate longitudinal strength. Important insights and findings with useful guidelines developed in this study are summarized.