본 논문에서는 영상인식을 위한 직선 HT(Hough transform) 알고리즘 연산의 하드웨어 구조를 제안하였다. 이 연산기는 기울기연산을 위한 필터링부위와 HT 연산부위로 이루어졌으며, 이때 각도에 관한 정보는 메모리 테이블에 저장하였다. 제안된 구조는 C 언어를 이용한 알고리즘 시뮬레이션을 수행하며 동작의 확인과 계산의 정밀도를 결정한 다음, 전체블록에 대하여 VHDL 언어에 의한 아키텍쳐 시뮬레이션을 수행하였다. 각 실험결과에 의하면, 연산된 데이타 값이 유사하게 얻어졌으며, 영상의 선명도와 사용 비트수가 커질수록 연산값의 차이가 적어짐을 확인하였다.
대한원격탐사학회 1999년도 Proceedings of International Symposium on Remote Sensing
/
pp.411-420
/
1999
In geology, lineament features have been used to identify geological events, and many of scientists have been developed the algorithm that can be applied with the computer to recognize the lineaments. We choose several edge detection filter, line detection filters and Hough transform to detect an edge, line, and to vectorize the extracted lineament features, respectively. firstly the edge detection filter using a first-order derivative is applied to the original image In this step, rough lineament image is created Secondly, line detection filter is used to refine the previous image for further processing, where the wrong detected lines are, to some extents, excluded by using the variance of the pixel values that is composed of each line Thirdly, the thinning process is carried out to control the thickness of the line. At last, we use the Hough transform to convert the raster image to the vector one. A Landsat image is selected to extract lineament features. The result shows the lineament well regardless of directions. However, the degree of extraction of linear feature depends on the values of parameters and patterns of filters, therefore the development of new filter and the reduction of the number of parameter are required for the further study.
This paper presents a parametric line equation on the log-polar mapped plane to detect the straight lines in an original image. The log-polar edge image used in Hough transform is constructed by combining the edge images of both fovea and periphery. The foveal edge image detected by a Sobel mask on the Cartesian plane is transformed to the log-polar plane by forward mapping but the edge detection of the peripheral region is obtained by directly applying the newly developed mask to the log-polar plane. This paper also proposes a analytic method then determining a border between the fovea and the periphery regions.
허프 변환은 데이터 손실 및 왜곡이 포함된 영상에서도 직선 정보 추출에 용이한 장점이 있어 컴퓨터 비전 분야의 응용분야에 널리 사용되어 왔다. 그러나 허프 변환의 보팅 과정은 비효율적인 연산구조와 많은 메모리 접근횟수로 인해 실시간 처리 임베디드 비전 시스템에 적용하는데 한계가 있다. 이에 본 논문에서는 허프 변환의 개선된 보팅 정책을 제시하고, 이를 적용하여 적은 하드웨어 자원 사용량으로 실시간 성능을 만족하는 허프 변환의 하드웨어 구조를 제안한다. 제안된 보팅 정책은 인접한 픽셀 간의 관계를 이용하여 보팅 연산 과정의 오버헤드를 줄였으며, 하드웨어 재사용성을 높임으로서 효율적인 연산구조를 가진다. 이러한 개선된 보팅 정책을 적용한 제안된 하드웨어 구조는 인접한 픽셀들의 보트 값을 병렬적으로 연산하고 저장하여 시간당 처리량을 높인다. 제안 구조의 장점은 순차적 연산 방식 대비 매우 적은 추가 하드웨어 자원만으로 이러한 성능 향상을 위한 병렬화를 달성한다는 것이다.
A CCD camera with a laser stripe was applied to realized the automatic weld seam tracking. The 3-dimensional information obtained from the vision system made it possible to generate the weld torch path. The adaptive Hough transformation was used to extract laser stripes an to obtain specific weld points. It takes relatively long time to process image on-line control using the basic control using the basic Hough transformation, but it has a tendency of robustness over the noises such as spatter. For this reason, it was complemented with adaptive Hough transformation to have an on-line processing ability for scanning specific weld points. The dead zone, where the sensing of weld line is impossible, was eliminated by rotating the camera with its rotating axis centered at the weld torch. When weld lines were detected, the camera angle was controlled in order to get the minimum image data for sensing of weld lines. Consequently, the image processing time was reduced.
A CCD-camera, which is structured with vision system, was used to realize automatic seam-tracking system and 3-D information which is needed to generate torch path, was obtained by using laser-slip beam. To extract laser strip and obtain welding-specific point, Adaptive Hough-transformation was used. Although the basic Hough transformation takes too much time to process image on line, it has a tendency to be robust to the noises as like spatter. For that reson, it was complemented with Adaptive Hough transformation to have an on-line processing ability for scanning a welding-specific point. the dead zone,where the sensing of weld line is impossible, is eliminated by rotating the camera with its rotating axis centered at welding torch. The camera angle is controlled so as to get the minimum image data for the sensing of weld line, hence the image processing time is reduced. The fuzzy controller is adapted to control the camera angle.
영상 내 직선을 검출하는 대표적인 알고리즘인 허프변환은 실세계 영상들에 적용할 때 그들의 복잡한 배경이나 잡음에 의해 생성되는 방대한 특징점들 때문에 상당한 계산량을 필요로 하고 쉽게 의사 직선을 검출한다. 본 논문은 기존 허프변환에 특징점의 유효성을 평가하는 전처리를 추가한 개선된 허프변환을 제안한다. 특징점 평가는 $3{\times}3$ 블록 특징점들의 패턴을 이용해 직선 검출에 필수적이지 않은 많은 특징점들을 제거할 수 있다. 다양한 영상을 대상으로 한 실험들에서 제안된 알고리즘은 영상에 따라 특징점들의 14%~58%를 제거하여 계산량을 줄여줄 뿐만 아니라 유효 직선 검출에서도 기존 알고리즘보다 우수함을 보여준다.
광학적 Hough 변환 필터 배열을 이용하여 입력영상의 특징을 추출할 수 있는 방법을 제안한다. 여기서는 입력 영상의 부분들이 대용되는 필터 배열의 요소들에 의해 독립적으로 동시에 Hough 변환된다. 하나의 광학적 Hough 변환 필터를 사용하여 입력영상 전체에 대한 변환 결과를 얻는 기존의 방식에 비해, 제안한 방법은 입력 영상에 존재하는 선소 특징의 대략적 위치 정보를 함께 얻을 수 있고 복잡한 입력영상에 대해서도 광학적 정확성을 높일수 있다. 이 방식을 실험적으로 입증하기 위해 $5\times5$ Hough 변환 필터 배열을 제작하고 기초적인 실험을 수행하였다.
The purpose of this study is to build and manage environment models with line segments from sonar range data on obstacles in unknown and varied environments. The proposed method therefore employs a two-stage data-transform process in order to extract environmental line segments from range data on obstacles. In the first stage, the occupancy grid extracted from the range data is accumulated to form a two-dimensional local histogram grid. In the second stage, a line histogram extracted from a local histogram grid is based on a Hough transform, and matching serves as a means of comparing each of the segments on a global line segments map against the line segments to detect the degree of similarity in the overlap, orientation, and arrangement. Each of these tests is formulated by comparing one of the parameters in the segment representation. After the tests, new line segments can be found at maximum-density cells in the line histogram, and they are composed onto the global line segment map. The proposed technique is demonstrated in experiments in an indoor environment.
본 논문에서는 디지털 영상의 배포에서, 위 변조에 사용되는 미디언 필터링 (Median Filtering : MF)을 분류하는 포렌식 검출 알고리즘을 제안한다. 이러한 문제를 해결하기 위한 특징벡터는 영상의 에지 검출량 정보 32, 64, 128에 대한 허프변환(Hough Transform)에 의하여, 각 허프라인 (Hough Line)의 양끝 좌표값과 Angle-Distance 좌표상의 허프픽크치 (Hough Peaks)를 조합하여 42-Dim.으로 구성하였다. 변조된 영상들 중에서 미디언 필터링을 분류하는 검출기는 SVM (Support Vector Machine)에서 특징벡터를 학습하여 구현되었다. 제안된 미디언 필터링 검출 알고리즘은 특징벡터의 길이가 10-Dim.의 MFR (Median Filtering Residual) 스킴 및 686-Dim.의 SPAM (Subtractive Pixel Adjacency Matrix) 스킴과 비교하여 원영상, 평균필터링 ($3{\times}3$), JPEG (QF=90, 70) 압축, 가우시안 필터링 ($3{\times}3$, $5{\times}5$) 영상 모두에서 미디언 필터링의 포렌식 분류율이 99% 이상의 성능을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.