• Title/Summary/Keyword: hot-plate test

Search Result 163, Processing Time 0.024 seconds

Effect of Microcurrent Therapy on Interleukin-6 Expression in Adjuvant Induced Rheumatoid Arthritis Rat Model (미세전류치료가 아주반트 유도 류마티스관절염 유발 흰쥐의 인터루킨-6 발현에 미치는 영향)

  • Lee, Hyun-Min;Lee, Sang-Yeol;Chang, Jong-Sung;Lee, Myoung-Hee;Kang, Jong-Ho
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.5 no.4
    • /
    • pp.551-558
    • /
    • 2010
  • 연구목적 : 미세전류 자극이 아주반트로 류마티스 관절염을 유발한 실험동물의 염증반응과 통증에 미치는 효과를 알아보기 위하여 실험동물의 발허리발가락관절내 염증반응 정도를 나타내는 인터루킨-6(interleukin-6)의 발현과 핫플레이트(hot plate)를 이용한 발도피지연시를 측정하여 미세전류의 효과에 대하여 알아보고자 하는데 목적이 있다. 연구방법 : 실험동물은 무작위로 대조군(n=18)과 미세전류를 적용한 실험군(n=18)으로 구분하였고, 각 군당 6마리씩 1일군, 7일군, 14일군으로 배정하였다. 류마티스 관절염 유발후 1일, 7일, 14일에 모든 실험동물의 열통각 역치를 나타내는 발도피지연시와 발허리발가락관절내 인터루킨-6의 발현정도를 측정하였다. 각 집단 내의 기간에 따른 발도피지연시와 인터루킨-6의 면역반응성은 일원배치 분산분석을 실시하였고, 사후분석으로는 Duncan의 다중범위검정을 실시하였다. 실험군과 대조군을 비교하기 위하여 독립표본 t-test를 실시하였다. 연구결과 : 실험결과는 다음과 같다. 1) 아주반트 주사 1일후, 실험군과 대조군에서 인터루킨-6 면역반응성과 발도피지연시는 비슷한 양상을 보였다. 2) 인터루킨-6 면역반응성은 아주반트 주사 7일, 14일 후 대조군이 실험군보다 유의하게 증가되었다(p<.05). 3) 발도피지연시는 아주반트 주사 7일, 14일 후 실험군이 대조군보다 유의하게 증가되었다(p<.05). 결론 : 이상의 결과로부터, 미세전류 자극이 아주반트로 유발된 류마티스관절염 모델에서 활액 조직내 염증반응을 감소시키고 열통각역치는 증가되는 것을 알 수 있었다.

Evaluation of the analgesic and anti-inflammatory properties of methanol extract of Artanema sesamoides Benth roots in animal models

  • Gupta, Malaya;Mazumder, UK;Selvan, V Thamil;Manikandan, L;Senthilkumar, GP;Suresh, R;Gomathi, P;Kumar, B Ashok
    • Advances in Traditional Medicine
    • /
    • v.8 no.2
    • /
    • pp.196-203
    • /
    • 2008
  • The methanol extract of the root of Artanema sesamoides Family Scrophuilariaceae (MEAS) was investigated for possible analgesic and anti-inflammatory effects in animals. Three models were used to study the extract effects on nociception, which were acetic acid-induced writhing response, hot-plate method and the tail flick test in mice. The antiinflammatory effects were evaluated using carrageenan, dextran, histamine and serotonin induced rat paw oedema (acute) and cotton pellet induced granuloma (chronic) models in rats. Results of the study revealed that the extract exhibited significant (P < 0.001) analgesic effect at a dose of 50, 100 and 200 mg/kg b.w p.o in mice in all the models. In acute model, the MEAS also exhibited significant (P < 0.001) antiinflammatory effect in all the above mentioned doses. In chronic model (cotton pellet induced granuloma) the MEAS 200 mg/kg and indomethacin 10 mg/kg showed that inhibition of granuloma formation 25.0% and 47.7% respectively (P < 0.001). The MEAS and indomethacin were effectively preventing the transudation of the fluid. Thus, the present study revealed that the methanol extract of the root of Artanema sesamoides exhibited significant analgesic and antiinflammatory activity.

Development of fission 99Mo production process using HANARO

  • Lee, Seung-Kon;Lee, Suseung;Kang, Myunggoo;Woo, Kyungseok;Yang, Seong Woo;Lee, Junsig
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1517-1523
    • /
    • 2020
  • The widely used medical isotope technetium-99 m (99mTc) is a daughter of Molybdenum-99 (99Mo), which is mainly produced using dedicated research reactors from the nuclear fission of uranium-235 (235U). 99mTc has been used for several decades, which covers about 80% of the all the nuclear diagnostics procedures. Recently, the instability of the supply has become an important topic throughout the international radioisotope communities. The aging of major 99Mo production reactors has also caused frequent shutdowns. It has triggered movements to establish new research reactors for 99Mo production, as well as the development of various 99Mo production technologies. In this context, a new research reactor project was launched in 2012 in Korea. At the same time, the development of fission-based 99Mo production process was initiated by Korea Atomic Energy Research Institute (KAERI) in 2012 in order to be implemented by the new research reactor. The KAERI process is based on the caustic dissolution of plate-type LEU (low enriched uranium) dispersion targets, followed by the separation and purification using a series of columns. The development of proper waste treatment technologies for the gaseous, liquid, and solid radioactive wastes also took place. The first stage of this process development was completed in 2018. In this paper, the results of the hot test production of fission 99Mo using HANARO, KAERI's 30 MW research reactor, was described.

Effect of NbC Carbide Addition on Mechanical Properties of Matrix-Type Cold-Work Tool Steel (매트릭스(matrix)형 냉간금형강의 기계적 특성에 미치는 NbC 탄화물 첨가의 영향)

  • Kang, Jun-Yun;Kim, Hoyoung;Son, Dongmin;Lee, Jae-Jin;Yun, Hyo Yun;Lee, Tae-Ho;Park, Seong-Jun;Park, Soon Keun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.5
    • /
    • pp.239-249
    • /
    • 2015
  • Various amount of NbC carbide was intentionally formed in a matrix-type cold-work tool steel by controlled amount of Nb and C addition. And the effect of NbC addition on the mechanical properties was investigated. Four alloys with different Nb and C contents were cast by vacuum induction melting, then hot forging and spheroidizing annealing were conducted. The machinability of the annealed specimens was examined with 3 different cutting tools. And tensile tests at room temperature were conducted. After quenching and tempering, hardness and impact toughness were measured, while wear resistance was evaluated by disk-on-plate type wear test. The increasing amount of NbC addition resulted in degraded machinability with increased strength, whereas the absence of NbC also led to poor machinability due to high toughness. After quenching and tempering, the additional NbC improved wear resistance with increasing hardness, whereas it deteriorated impact toughness. Therefore, it could be found that a moderate addition of NbC was desirable for the balanced combination of mechanical properties.

Study on the Anti-inflammatory, Analgesic and Anticoagulative effects of Whalrakdan in the experimental animals (활락단(活絡丹)이 항염(抗炎), 진통(鎭痛) 및 항혈전(抗血栓)에미치는 영향(影響)에 대(對)한 연구(硏究))

  • Kang, Seung-Bum;Park, Jong-Woon;Kim, Jong-Gil;Jo, Nam-Soo;Moon, Byung-Soon
    • The Journal of Internal Korean Medicine
    • /
    • v.20 no.1
    • /
    • pp.57-72
    • /
    • 1999
  • This study was designed to elucidate the anti-inflammatory, cardiovascular, anti-thrombotic, and analgesic effect of Whalrakdan. The anti-inflammatory effects was measured by the method of carrageenin induced edema, protein leakage test using CMC-pouch, and the effect of Whalrakdan on the cardiovascular system was observed by the change of flow rate of Ringer solution in the vascular system in the ear of rabbit. and the contraction and dilatation of rat tail artery. Death rate, platelet aggregation, plasma coagulation activity, antithrombin activity was observed for the measurement of the anti-thrombotic effect of Whalrakdan, and the analgesic effect was measured by the acetic acid method and hot plate method. The result was as follows: 1. After 2 or 3hour of Whalrakdan administration, carrageenin induced edema and CMC-pouch protein leakage was significantly decreased. 2. The slight anagesic effect of Whalrakdan extract was confirmed by the observation of writhing syndrome, paw licking time, and escape time. 3. The droplet of Ringer solution increased according to the increase of concentration of Whalrakdan extract, and the vasoconstriction decreased dependantly to the concentration of Whalrakdan extract. 4. The anti-thrombotic effect of Whalrakdan was observed by the decrease of death rate, the inhibition of platelet aggregation, and the increase of anti-thrombin activity.

  • PDF

A Study on Heat Transfer Characteristics of a Closed Two-Phase Thermosyphon with a Low Tilt Angle (낮은 경사각을 갖는 밀폐형 2상 열사이폰의 열전달 특성에 관한 연구)

  • 김철주;강환국;김윤철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.1
    • /
    • pp.1-12
    • /
    • 1996
  • In lots of application to heat exchanger systems, closed two-phase thermosyphons are tilted from a horizontal. If the tilt angle, especially, is less than 30$^{\circ}$, the operational performances of thermosyphon are highly dependent on tilt angle. The present study was conducted to better understand such operational behaviors as mech-anni는 of phase change, and flow patterns inside a tilted thermosyphon. For experiment, an ethanol thermosyphon with a 35% of fill charge rate was designed and manufactured, using a copper tube with a diameter 19mm and a length 1500mm. Through a series of test, the tilt angle was kept constant at each of 4 different values in the range 10~25deg. and the heat supply to the evaporator was stepwisely increased up to 30㎾/$m^2$. When a steady state was established to the thermosyphon for each step of thermal loads, the wall temperature distribution and vapor temperature at the condenser were measured. The wall temperature distributions demonstrated a formation of dry patch in the top end zone of the evaporator, with a values of temperature 20~4$0^{\circ}C$ higher than the wetted surface for a moderate heat flux q≒20㎾/$m^2$. Inspite of the presence of hot dry patch, however, the mean values of boiling heat transfer coefficient at the evaporator wall were still in a good agreement with those predicted by Rohsenow's formula, which was based on nucleate boiling. For the condenser, the wall temperatures were practically uniform, and the measured values of condensation heat transfer coefficient were 1.7 times higher than the predicted values obtained from Nusselt's film condensation theory on tilted plate. Using those two expressions, a correlation was formulated as a function of heat flux and tilt angle, to determine the total thermal resistance of a tilted thermosyphon. The correlation formula showed a good agreement with the experimental data within 20%.

  • PDF

Berberine Alleviates Paclitaxel-Induced Neuropathy

  • Rezaee, Ramin;Monemi, Alireza;SadeghiBonjar, Mohammad Amin;Hashemzaei, Mahmoud
    • Journal of Pharmacopuncture
    • /
    • v.22 no.2
    • /
    • pp.90-94
    • /
    • 2019
  • Objectives: Paclitaxel (PTX) as an anticancer drug used against solid cancers, possesses adverse reactions such as neuropathic pain which has confined its use. PTX-induced neuropathic pain is mediated via activation of oxidative stress. Berberine (BER), an isoquinoline phytochemical found in several plants, exerts strong antioxidant and painkilling properties. In the current study, we aimed to evaluate pain-relieving effect of BER in a mouse model of PTX-induced neuropathic pain. Methods: This study was done using 42 male albino mice that were randomly divided into 6 groups (n = 7) as follow: Sham-operated (not treated with PTX), negative control group (PTX-treated mice receiving normal saline), BER 5, 10, and 20 mg/kg (PTX-treated mice receiving BER) and positive control group (PTX-treated mice receiving imipramine 10 mg/kg). Neuropathic pain was induced by intraperitoneal administration of four doses of PTX (2 mg/kg/day) on days 1, 3, 5 and 7. Then, on day 7, hot plate test was done to assess latency to heat to measure possible anti-neuropathic pain effect of BER. Results: Four doses of PTX 2 mg/kg/day induced neuropathy that was reduced by BER at all time-points (i.e. 0, 30, 60, 90 and 120 min) after injection (P < 0.001 in comparison to control). The statistical analysis of data showed significant differences between groups (P < 0.001 in comparison to negative control), at 30, 60, 90 and 120 min after injection of BER 5, 10 and 20 mg/kg; in other words, 30, 60, 90 and 120 min after BER administration, neuropathic pain was significantly reduced as compared to normal saline-treated mice. Conclusion: Altogether, our results showed that PTX could induce neuropathic pain as reflected by hyperalgesia and BER could alleviate PTX-induced thermal hyperalgesia.

Effects of Intraperitoneal N-methyl-D-aspartate (NMDA) Administration on Nociceptive/Repetitive Behaviors in Juvenile Mice

  • Kim, Seonmin;Kim, Do Gyeong;Gonzales, Edson luck;Mabunga, Darine Froy N.;Shin, Dongpil;Jeon, Se Jin;Shin, Chan Young;Ahn, TaeJin;Kwon, Kyoung Ja
    • Biomolecules & Therapeutics
    • /
    • v.27 no.2
    • /
    • pp.168-177
    • /
    • 2019
  • Dysregulation of excitatory neurotransmission has been implicated in the pathogenesis of neuropsychiatric disorders. Pharmacological inhibition of N-methyl-D-aspartate (NMDA) receptors is widely used to model neurobehavioral pathologies and underlying mechanisms. There is ample evidence that overstimulation of NMDA-dependent neurotransmission may induce neurobehavioral abnormalities, such as repetitive behaviors and hypersensitization to nociception and cognitive disruption, pharmacological modeling using NMDA has been limited due to the induction of neurotoxicity and blood brain barrier breakdown, especially in young animals. In this study, we examined the effects of intraperitoneal NMDA-administration on nociceptive and repetitive behaviors in ICR mice. Intraperitoneal injection of NMDA induced repetitive grooming and tail biting/licking behaviors in a dose- and age-dependent manner. Nociceptive and repetitive behaviors were more prominent in juvenile mice than adult mice. We did not observe extensive blood brain barrier breakdown or neuronal cell death after peritoneal injection of NMDA, indicating limited neurotoxic effects despite a significant increase in NMDA concentration in the cerebrospinal fluid. These findings suggest that the observed behavioral changes were not mediated by general NMDA toxicity. In the hot plate test, we found that the latency of paw licking and jumping decreased in the NMDA-exposed mice especially in the 75 mg/kg group, suggesting increased nociceptive sensitivity in NMDA-treated animals. Repetitive behaviors and increased pain sensitivity are often comorbid in psychiatric disorders (e.g., autism spectrum disorder). Therefore, the behavioral characteristics of intraperitoneal NMDA-administered mice described herein may be valuable for studying the mechanisms underlying relevant disorders and screening candidate therapeutic molecules.

Effects of Complex Oxides on HAZ Toughness of Three API X80 Linepipe Steels (API X80 라인파이프강의 용접열영향부 충격인성에 미치는 복합산화물의 영향)

  • Shin, Sang Yong;Oh, Kyoungsik;Kang, Ki Bong;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.4
    • /
    • pp.199-208
    • /
    • 2008
  • This study is concerned with effects of complex oxides on Charpy impact toughness of heat affected zone (HAZ) of API X80 linepipe steels. Three kinds of steels were fabricated by varying alloying elements such as Ti, Al, and Mg and hot-rolling conditions to form complex oxides, and their microstructures and Charpy impact properties were investigated. The number of complex oxides present in the steel containing excess Ti, Al, and Mg was twice larger than that in the conventional steels, while their size ranged from 1 to $3{\mu}m$ in the three steels. After the HAZ simulation test, the steel containing a number of oxides contained about 20 vol.% of acicular ferrite in the simulated HAZ, together with bainitic ferrite and martensite, whereas the HAZ microstructure of the conventional steels consisted of bainitic ferrite and martensite with a small amount of acicular ferrite. This formation of acicular ferrite in the oxide-containing steel was associated with the nucleation of acicular ferrite at complex oxides, thereby leading to the great (five times or more) improvement of Charpy impact toughness over the conventional steels.

Effects of Carbon, Tungsten, and Vanadium on the Microstructure, High-Temperature Wear Properties, and Surface Roughness of High Speed Steel Rolls (고속도강롤의 미세조직, 고온마모특성, 표면조도에 미치는 탄소, 텅스텐, 바나듐의 영향)

  • Ha, Dae Jin;Sung, Hyo Kyung;Park, Joon Wook;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.7
    • /
    • pp.406-415
    • /
    • 2009
  • A study was conducted on the effects of carbon, tungsten, and vanadium on the wear properties and surface roughness of four High Speed Steel (HSS) rolls manufactured by the centrifugal casting method. Hot-rolling simulation tests were carried out using a high-temperature wear tester capable of controlling speed, load, and temperature. HSS rolls contained a large amount (up to 25 vol.%) of carbides such as MC, $M_{2}C$, $M_{7}C_{3}$, and $M_{6}C$ carbides formed in the tempered martensite matrix. The matrix consisted mainly of lath tempered martensite when the carbon content in the matrix was small, and contained a considerable amount of plate tempered martensite when the carbon content increased. The high-temperature wear test results indicated that the wear properties and surface roughness of the rolls improved when the amount of hard MC carbides formed inside solidification cells increased. The rolls distribution was also homogeneous. The best wear properties and surface roughness were obtained from a roll where a large amount of MC carbides was homogeneously distributed in the lath tempered martensite matrix. The proper contents of carbon equivalent, tungsten equivalent, and vanadium were 2.0~2.3%, 9~10%, and 5~6%, respectively.