• 제목/요약/키워드: hot wire anemometer

검색결과 172건 처리시간 0.022초

횡방향으로 회전하는 90도 정사각 단면 곡덕트에서 발달하는 난류유동의 측정 (Measurement of Developing Turbulent Flows in a 90-Degree Square Bend with Spanwise Rotation)

  • 김동철;최영돈;이건휘
    • 대한기계학회논문집B
    • /
    • 제27권2호
    • /
    • pp.206-214
    • /
    • 2003
  • Mean flow and turbulence properties of developing turbulent flows in a 90 degree square bend with spanwise rotation were measured by a hot-wire anemometer. A slanted wire is rotated into 6 orientations and the voltage outputs from them are combined to obtain the mean velocity and Reynolds stress components. The combinative effects of the centrifugal and Coriolis forces due to the curvature and the rotation of bend on the mean motion and turbulence structures are investigated experimentally. Results show that the two body forces can either enhance or counteract each other depending on the flow direction in the bend.

흐름측정용 실리콘 소자의 제작 및 특성 평가(l) (Fabrication and Characterization of Silicon Device for Flow Measurement(l))

  • 이명복;주병권;이정일;김형곤;오명환;강광남
    • 한국재료학회지
    • /
    • 제3권1호
    • /
    • pp.28-32
    • /
    • 1993
  • Si기판상에 Ni 박막 저항체를 형성하여 hot wire anemometer형 흐름측정 소자를 제작하고 이의 특성을 평가하여 보안ㅆ다. 니켈 박박 저항체의 온도계수는 박막의 두께가 얇아짐에 따라 감소하였으며, 제작된 흐름센서의 감ㅁ도는 111.3${\mu}$W/(${\ell}$ pm$)^{1/2}$, 동적인 응답시간은 수 십초 정도로 평가되었다.

  • PDF

직사각형 단면을 갖는 $90^{\circ}C$ 급곡관 내의 3차원 난류유동에 관한 실험적 연구 (Experimental Study of Three-Dimensional Turbulent Flow in a $90^{\circ}C$ Rectanglar Cross Sectional Strongly Curved Duct)

  • 맹주성;류명석;양시영;장용준
    • 대한기계학회논문집
    • /
    • 제15권1호
    • /
    • pp.262-273
    • /
    • 1991
  • 본 연구에서는 벽면에서의 압력은 압력측정 정치를 제작하여 측정하였으며 평 균유동 및 난류량들은 열선 유속계(hot wire system)을 사용하여 측정하였다.

국소 벽면 진동에 의한 난류경계층 유동 변화 (Modification of Turbulent Boundary Layer Flow by Local Wall Vibration)

  • 김철규;전우평;박진일;김동주;최해천
    • 대한기계학회논문집B
    • /
    • 제24권9호
    • /
    • pp.1255-1263
    • /
    • 2000
  • In this study, the modification of turbulent boundary layer flow by local wall vibration is investigated. The wall is locally vibrated using a wall deformation actuator, which moves up and down at the frequencies of 100Hz and 50Hz. Simultaneous measurements of the streamwise velocities in the spanwise direction are performed at several wall-normal and streamwise locations using an in-house multi-channel hot wire anemometer and a spanwise hot-wire-probe rake. The mean velocity is reduced in most places due to the wall vibration and its reduced amount becomes small as flow goes downstream. Interestingly, the mean velocity is found to increase very near the wall and near the actuator. This is due to the motion induced by the streamwise vortices which are generated by the downward motion of the actuator. In case of the streamwise velocity fluctuations, their magnitude increases as compared to the unperturbed turbulent boundary layer, and the increased amount becomes small as the flow moves downstream. The modified flow field at the forcing frequency of 50Hz is not much different from that of 100Hz, except the reduced amount of modification.

한양대학교 중형 아음속 풍동의 공력특성에 관한 연구 (Study on the Aerodynamic Characteristics of Hanyang Low Speed Wind Tunnel)

  • 고광철;정현성;김동화;조진수
    • 한국항공우주학회지
    • /
    • 제31권4호
    • /
    • pp.92-98
    • /
    • 2003
  • 한양대학교 중형 아음속 풍동의 설계요구사항에 따라 균일도 증가 및 난류도 감소를 위한 최적설계를 수행하였다. 신뢰성 있는 풍동실험을 위해 먼저 풍동 시험부의 균일도와 난류강도 특성이 먼저 파악되어야 한다. 한양대학교 중형 아음속 풍동의 비균일도와 난류강도는 세 부분의 속도영역에서 피토관과 X형 열선프로브로 각각 측정되었다. 풍동 시험부의 유속이 증가함에 따라 비균일도가 작아졌으나 시험부의 측정단면이 확산부에 가까워질수록 비균일도가 크게 나타났다. 난류강도는 시험부 중앙에서 설계 요구조건에 비해 약간 높게 측정되었다.

원주상으로 배열된 원형 제트의 유동 측정 (Flow Measurements of Circular Jets Arrayed Circumferentially)

  • 진학수;김성초;김정수;최종욱
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제27회 추계학술대회논문집
    • /
    • pp.11-14
    • /
    • 2006
  • 본 연구에서는 열선풍속계를 이용하여 다중 제트 유동장을 측정하여 해석하였다. 노즐배열은 원주상에 등간격으로 배열되였으며, 중심에 노즐이 있거나 혹은 없는 두 가지 경우로 분류하였다. 두 가지 경우의 레이놀즈 수가 노즐 출구에서 약 $10^4$일 때, 평균 속도, 레이놀즈 응력 등을 측정하였다. Tollmien 의 이론 속도 분포식은 중심에 노즐이 있는 경우에서 노즐 출구로부터 약 48d인 지점에서 성립하였다. 최대속도 감소와 상호작용은 중심 노즐의 유무에 의존한다.

  • PDF

Investigation of the Three-Dimensional Turbulent Flow Fields of the Gas Swirl Burner with a Cone Type Baffle Plate(I)

  • Kim, Jang-kweon
    • Journal of Mechanical Science and Technology
    • /
    • 제15권7호
    • /
    • pp.895-905
    • /
    • 2001
  • This paper presents vector fields, three dimensional mean velocities, turbulent intensities, turbulent kinetic energy and Reynolds shear stresses measured in the X-Y plane of the gas swirl burner with a cone type baffle plate by using an X-type hot-wire probe. This experiment is carried out at the flow rates of 350 and 450ℓ/min which are equivalent to the combustion air flow rate necessary to release 15,000 kcal/hr in a gas furnace. The results show that the maximum axial mean velocity component exists around the narrow slits situated radially on the edge of a burner. Therefore, there is some entrainment of ambient air in the outer region of a burner. The maximum values of turbulent intensities occur around the narrow slits and in front of a burner up to X/R=1.5. Moreover, the turbulent intensity components show a relatively large value in the inner region due to the flow diffusion and mixing processes between the inclined baffle plate and the swirl vane. Consequently, the combustion reaction is expected to occur actively near these regions.

  • PDF

Investigation of the Three-Dimensional Turbulent Flow Fields of the Gas Swirl Burner with a Cone Type Baffle Plate(II)

  • Kim, Jang-kweon
    • Journal of Mechanical Science and Technology
    • /
    • 제15권7호
    • /
    • pp.906-920
    • /
    • 2001
  • This paper presents three-dimensional mean velocities, turbulent intensities and Reynolds shear stresses measured in the Y-Z plane of the gas swirl burner with a cone type baffle plate by using an X-type hot-wire probe. This experiments is carried out at the flow rate of 450ℓ/min which is equivalent to the combustion air flow rate necessary to heat release 15,000 kcal/hr in a gas furnace. Mean velocities and turbulent intensities etc. show that their maximum values exist around the narrow slits situated radially on the edge of and in front of a burner. According to downstream regions, they have a peculiar shape like a starfish because the flows going out of the narrow slits and the swirl vanes of an inclined baffle plate diffuse and develop into inward and outward of a burner. The rotational flow due to the inclined flow velocity going out of swirl vanes of a cone type baffle plate seems to decrease the magnitudes of mean velocities V and W respectively by about 30% smaller than those of mean velocity U. The turbulent intensities have large values of 50%∼210% within the range of 0.5

  • PDF

유속 센서의 실리콘 브리지 주위의 유동 및 열전달 수치해석에 관한 연구 (Theoretical study of flow and heat transfer around silicon bridge in a flow sensor)

  • 황호영;김호영;정진택
    • 대한기계학회논문집B
    • /
    • 제20권4호
    • /
    • pp.1376-1384
    • /
    • 1996
  • Measuring the velocity of fluid flow, semiconductor flow sensors are widely used in the various fields of engineering and science such as the semiconductor manufacturing processes and electronic control engines for automobiles. In the near future, this type of sensors will replace present hot wire type sensors or other type flow sensor due to its low price, easy handling and small size. To develop the advanced semiconductor flow sensor, it is necessary to obtain characteristics of the flow and the heat transfer around the sensor in advance. In the present study, the theoretical analysis including mathematical modeling and numerical calculation to predict the characteristics of heat transfer and flow field around the sensor was carried out. The main parameters for optimum design of the flow sensor are the free stream velocity, the heat generation rate of silicon arm and the distance between arms. Effects of these parameters on flow and heat transfer around the sensor and the temperature difference between arms are examined.

PistonCavity 형상에 따른 충돌분류의 분무거동 (The Behavior of Impinging Spray by Piston Cavity Geometry)

  • 이상석;김근민;김봉곤;정성식;하종률
    • 한국자동차공학회논문집
    • /
    • 제4권3호
    • /
    • pp.211-219
    • /
    • 1996
  • In a small high-speed D. I. diesel engine, the injected fuel spray into the atmosphere of the high temperature is burnt by go through the process of break up, atomization, evaporation and process of ignition. These process are important to decide the emission control and the rate of fuel consumption and out put of power. Especially, in the case of injected fuel spray impinging on the wall of piston cavity, the geometry of piston cavity gives great influence the ignitability of injected fuel and the flame structure. Ordinary, the combustion chamber of driving engine have unsteady turbulent flow be attendant on such as the change of temperature, velocity and pressure. So the analysis of spray behavior is difficult. In this study, the spray was impinged on the wall of 3 types of piston cavity such as Dish, Toroidal, Re-entrant type, in order to analyze the combustion process of impinging spray precisely and systematically. And hot wire probe was used for analyze non-steady flow characteristics of impinging spray, and to investigate the behavior of spray, the aspects of concentration c(t), standard deviation σ(t) and variation factor(vf) was measured with the lapse of time.

  • PDF