• Title/Summary/Keyword: hot wall epitaxy

Search Result 180, Processing Time 0.026 seconds

Hot-wall epitaxial growth and characteristic of CdTe films (Hot-wall epitaxy법에 의한 CdTe 박막의 성장과 특성)

  • 박효열;조재혁;진광수;황영훈
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.4
    • /
    • pp.140-144
    • /
    • 2004
  • CdTe thin films were grown on GaAs (100) substrates by hot wall epitaxy method. From the XRD measurements, it was found that CdTe/GaAs (100) film was grown as a single crystals with the different from growth plane of (III), and growth rate of CdTe thin films was found to be 30 $\AA/sec$ by SEM. To acquire a high quality CdTe thin film, the optimum temperature for the source and substrate are found to be $500^{\circ}C$ and $320^{\circ}C$, respectively, which was checked by PL.

Growth and Study on Photo current of Valence Band Splitting for $AgGaSe_2$ single crystal thin film by hot wall epitaxy (Hot Wall Epitaxy(HWE)법에 의한 $AgGaSe_2$ 단결정 박막 성장과 특성)

  • Park, Chang-Sun;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.85-86
    • /
    • 2006
  • Single crystal $AgGaSe_2$ layers were grown on thoroughly etched semi-insulating GaAs(100) substrate at $420^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating $AgGaSe_2$ source at $630^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The temperature dependence of the energy band gap of the $AgGaSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=19501 eV-(879{\times}10^{-4} eV/K)T^2/(T+250 K)$.

  • PDF

Opto-electric Properties of $ZnIn_2S_4$ single crystal thin film Grown by Hot Wall Epitaxy method (Hot Wall Epitaxy (HWE)에 의한 성장된 $ZnIn_2S_4$ 단결정 박막의 광전류 특성)

  • Hong, Kwang-Joon;Lee, Sang-Youl
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.71-72
    • /
    • 2006
  • The stochiometric mixture of evaporating materials for the $ZnIn_2S_4$ single crystal thin film was prepared from horizontal furnace. To obtain the $ZnIn_2S_4$ single crystal thin film. $ZnIn_2S_4$ mixed crystal was deposited on throughly etched semi-insulating GaAs(100). In the Hot Wall Epitaxy(HWE) system. From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the $ZnIn_2S_4$ single crystal thin film, we have found that the values of spin orbit splitting ${\Delta}So$ and the crystal field splitting ${\Delta}Cr$ were 0.0148 eV and 0.1678 eV at $10_{\circ}K$, respectively.

  • PDF

Growth and electrical properties for $AgGaSe_2$ epilayers by hot wall epitaxy (Hot Wall Epitaxy(HWE)법에 의한 $AgGaSe_2$ 단결정 박막 성장과 전기적 특성)

  • Park, Chang-Sun;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.96-97
    • /
    • 2008
  • Single crystal $AgGaSe_2$ layers were grown on thoroughly etched semi-insulating GaAs(100) substrate at 420 $^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating $AgGaSe_2$ source at 630 $^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of single crystal $AgGaSe_2$ thin films measured with Hall effect by van def Pauw method are $9.24\times10^{16}cm^{-3}$ and 295 $cm^2/V{\cdot}s$ at 293 K, respectively.

  • PDF

The Study of Growth and Characterization of CuGaSe$_2$ Sing1e Crystal Thin Films for solar cell by Hot Wall Epitaxy (HWE(Hot Wall Epitaxy)에 의한 태양 전지용 박막성장과 특성에 관한 연구)

  • 홍광준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.237-242
    • /
    • 2001
  • The stochiometric mix of evaporating materials for the CuGaSe$_2$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, CuGaSe$_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were 610$^{\circ}C$ and 450$^{\circ}C$, respectively The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the CuGaSe$_2$ single crystal thin film, we have found that the values of spin orbit splitting Δ So and the crystal field splitting ΔCr were 91 meV and 249.8 meV at 20 K, respectively. From the Photoluminescence measurement on CuGaSe$_2$ single crystal thin film, we observed free excition (Ex) existing only high quality crystal and neutral bound exiciton (D$^{\circ}$,X) having very strong peak intensity. Then, the full-width-at-half-maximum(FWHM) and binding energy 7f neutral acceptor bound excision were 8 meV and 35.2 meV, respectivity. By Haynes rule, an activation energy of impurity was 355.2 meV

  • PDF

Characterization for $AgGaS_2$ single crystal thin film grown by hot wall epitaxy (Hot Wall Epitaxy(HWE)법에 의해 성장된 $AgGaS_2$ 단결정 박막의 특성)

  • Lee, Gyoun-Gyo;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.101-102
    • /
    • 2006
  • A stoichiometric mixture of evaporating materials for $AgGaS_2$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films. $AgGaS_2$ mixed crystal was deposited on thoroughly etched semi-Insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $590^{\circ}C$ and $440^{\circ}C$, respectively. The temperature dependence of the energy band gap of the $AgGaS_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=2.7284 eV-(8.695{\times}10^{-4} eV/K)T^2/(T+332 K)$. After the as-grown $AgGaS_2$ single crystal thin films was annealed in Ag-, S-, and Ga-atmospheres, the origin of point defects of $AgGaS_2$ single crystal thin films has been investigated by the photoluminescence(PL) at 10 K.

  • PDF

Photoluminescience propeerties for $CuGaSe_2$ epilayers grown by hot wall epitaxy (Hot Wall Epitaxy(HWE) 법에 의해 성장된 $CuGaSe_2$ 에피레이어의 광발광 특성)

  • Kim, Hyae-Jeong;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.100-101
    • /
    • 2008
  • To obtain the single crystal thin films, $CuGaSe_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $610^{\circ}C$ and $450^{\circ}C$, respectively. After the as-grown $CuGaSe_2$ single crystal thin films was annealed in Cu-, Se-, and Ga-atmospheres, the origin of point defects of $CuGaSe_2$ single crystal thin films has been investigated by the photoluminescence(PL) at 10 K. The native defects of $V_{CU}$, $V_{Se}$, $Cu_{int}$, and $Se_{int}$ obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the Cu-atmosphere converted $CuGaSe_2$ single crystal thin films to an optical n-type. Also, we confirmed that Ga in $CuGaSe_2$/GaAs did not form the native defects because Ga in $CuGaSe_2$ single crystal thin films existed in the form of stable bonds.

  • PDF

Growth and Optical Properties for $AgGaSe_2$ Single Crystal Thin Films by Hot Wall Epitaxy (Hot Wall Epitaxy (HWE)법에 의한$AgGaSe_2$ 단결정 박막 성장과 광학적 특성)

  • Hong, Kwang-Joon;Back, Seoung-Nam
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.124-127
    • /
    • 2003
  • The stochiometric $AgGaSe_2$ polycrystalline mixture of evaporating materials for the $AgGaSe_2$ single crystal thin film was prepared from horizontal furnance. To obtain the single crystal thin films, $AgGaSe_2$ mixed crystal and semi-insulating GaAs(100) wafer were used as source material and substrate for the Hot Wall Epitaxy (HWE) system, respectively. The source and substrate temperature were fixed at $630^{\circ}C$ and $420^{\circ}C$, respectively. The thickness of grown single crystal thin films is $2.1{\mu}m$. The single crystal thin films were investigated by photoluminescence and double crystal X-ray diffraction(DCXD) measurement. From the photoluminescence measurement of $AgGaSe_2$ single crystal thin film, we observed free excition ($E_x$) observable only in high quality crystal and neutral bound excition ($D^{\circ}$,X) having very strong peak intensity. And, the full width at half maximum and binding energy of neutral donor bound excition were 8 meV and 14.1 meV, respectively. By Haynes rule, an activation energy of impurity was 141 meV.

  • PDF

Opto-electric properties for the $AgInS_2$ epilayers grown by hot wall epitaxy (Hot wall epitaxy법에 의해 성장된 $AgInS_2$ 박막의 광전기적 특성)

  • Lee, K.G.;Hong, K.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.267-270
    • /
    • 2004
  • A silver indium sulfide($AgInS_2$) epilayer was grown by the hot wall epitaxy method, which has not been reported in the literature. The grown $AgInS_2$ epilayer has found to be a chalcopyrite structure and evaluated to be high qualify crystal. From the photocurrent measurement in the temperature range from 30 K to 300 K, the two peaks of A and B were only observed, whereas the three peaks of A, B, and C were seen in the PC spectrum of 10 K. These peaks. are ascribed to the band-to-band transition. The valence band splitting of $AgInS_2$ was investigated by means of the photocurrent measurement. The crystal field splitting, $\ddot{A}cr$, and the spin orbit splitting, $\ddot{A}so$, have been obtained to be 0.150 eV and 0.009 eV at 10 K, respectively. And, the energy band gap at room temperature has been determined to be 1.868 eV. Also, the temperature dependence of the energy band gap, $E_g(T)$, was determined.

  • PDF