• Title/Summary/Keyword: hot spot stress

Search Result 93, Processing Time 0.025 seconds

Fatigue Strength of Fillet Welded Steel Structure Under Out-of-plane Bending Load

  • Kang, S.W.;Kim, W.S.;Paik, Y.M.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.1
    • /
    • pp.33-39
    • /
    • 2002
  • The effect of out-of-plane loads on the fatigue strength of welded steel structures is examined through fatigue tests with weldment of two fillet weld joint types. The results of the fatigue tests are compared with those under axial loads, on the basis of the hot spot stress range at the weld toe. From the result of the comparison, a method on how to incorporate the effect of the out-of-plane bending stress is proposed using design S-N curves derived from fatigue tests under the axial load. The proposed method is useful for rational assessment of the fatigue strength of fillet-welded structures, where combined stresses of the in-plane axial stress and the out-of-plane bending stress are induced simultaneously due to the complexity of applied loads and structural geometry.

  • PDF

Numerical Study on the Hot Spots of Friction Surface in Disk Brakes (디스크 브레이크 마찰표면의 적열점에 관한 수치적 연구)

  • Kim, Chung-Kyun;Cho, Seung-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1692-1696
    • /
    • 2004
  • This paper presents the thermally induced hot spot characteristics of rubbing surface in the friction pad disk brake. During the braking period, the rubbing surface with irregular asperities that are strongly engaged in rough surface, wear, and deformed surface due to a friction heating may produce an irregular distorted geometry of the disk surface. The tribological interactions between the disk and the pads are unstable if the contact stress is severe, in which the irregularity develops the contact pressure distribution, leading eventually to localized contact, high temperature and formation of hot spots. The computed results of contact spots that are simulated using a coupled thermal-mechanical analysis present sinusoidal distortions and localized extrusions of the disk surface, which are strongly related to a hot spot in the practical disk brake.

An Estimation of the Stress Concentration Factor for Mast Lug of Yacht with Different Shapes (해양레저용 요트의 마스트 러그 형상에 따른 응력집중계수 추정)

  • Roh, Ji-Sun;Oh, Dong-Jin;Kim, Myung-Hyun
    • Journal of Welding and Joining
    • /
    • v.30 no.1
    • /
    • pp.72-77
    • /
    • 2012
  • Recently, according to the increase of income and development of quality of life, the leisure industry has been developed. In particular, the interest of design and manufacture technology of leisure yacht has significantly increased. However, domestic market of leisure ships is currently in its initiating stage. So research and development for structural strength of leisure yacht need to be investigated. In this study, lug of yacht's mast which is known for a critical damage region is explicitly considered. This paper deals with the estimation of stress concentration factors (SCFs) for lug of yacht's mast depending on dimensions of lug using hot spot stress. Also, SCF formulae is suggested using parametric study.

The Variation of Electrical Characteristics of PV Module due to Mechanical Stress (기계적 스트레스에 의한 태양전지모듈의 전기적 특성변화)

  • Kong, Ji-Hyun;Ji, Yang-Geun;Kang, Gi-Hwan;Kim, Kyung-Su;Yu, Gwon-Jong;Ahn, Hyung-Kuen;Han, Deuk-Young
    • New & Renewable Energy
    • /
    • v.6 no.1
    • /
    • pp.38-45
    • /
    • 2010
  • Abstract Under the physical stress on photovoltaic (PV) module, it will be warped according to elongation of the front glass and then micro-crack will be occurred in the thermally sealed solar cell. This micro-crack leads to drop of short circuit current of the PV module. This is because of increase of resistance component by micro-crack. Micro-crack at specific solar cell in the module lessens the durability of PV module with reduced output, hot-spot caused by solar cell output mismatch and increased resistance component. This study shows the relation between electrical characteristics and micro- cracks due to mechanical stress on PV module.

A Study on Fatigue Design for Welded Joint of STS301L (STS301L 용접이음재의 피로설계에 관한 연구)

  • Baek, Seung-Yeb
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.127-131
    • /
    • 2010
  • Stainless steel sheets are widely used as the structural material for the railroad cars and the commercial vehicles. These kinds of structures used stainless steel sheets are commonly fabricated by using the gas welding. For fatigue design of gas welded joints such as fillet and plug type joint, it is necessary to obtain design information on stress distribution at the weldment as well as fatigue strength of gas welded joints. And also, the influence of the geometrical parameters of gas welded joints on stress distribution and fatigue strength must be evaluated. Thus, in this paper, ${\Delta}P-N_f$ curves were obtained by fatigue tests. Using these results, ${\Delta}P-N_f$ curves were rearranged in the. ${\Delta}{\sigma}-N_f$ relation with the hot spot stresses at the gas welded joints.

Application of Fatigue Life Assessment considering Residual Stresses for Various Welded Details (잔류응력을 고려한 피로수명평가법의 적용성 검토(I) - 다양한 용접연결부에 대한 적용 -)

  • Han, Jeong-Woo;Lee, Tak-Kee;Han, Seung-Ho;Kim, Jae-Hoon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.125-129
    • /
    • 2002
  • Authors had developed the model for the fatigue life assessment of welded details considering residual stress and its relaxation. The model consists of three ingredients; a hot-spot stress approach, a residual stress relaxation, and an equivalent stress. The equivalent stress is induced by stress ranges and the ratios between the applied mean stresses and the ultimate stress of material. Once being tuned with two specific fatigue tests by using load carrying cruciform joint, this model can be applied to many kinds of welded details which structural stress concentration factors are different from each other. This paper reports the application of the proposed model for various welded details including cover plate, longitudinal stiffener, gusset and side attachment. From the investigation of predicted results by using the proposed model it was shown that the ambiguous fatigue characteristics of the various details influenced widely by the welding residual stress are clarified, and also the model could be applied to assess fatigue life of general welded structures.

  • PDF

A Study on the Evaluation of Fatigue Strength of Welded Lap Joint with Element Stress Approach (요소 응력을 이용한 겹침 용접부의 피로 강도 평가에 관한 연구)

  • Kim, Hyeon-Su;Shin, Sang-Beom;Kim, Myung-Hyun;Park, Dong-Hwan
    • Journal of Welding and Joining
    • /
    • v.32 no.1
    • /
    • pp.61-65
    • /
    • 2014
  • The purpose of this study is to evaluate the applicability of the element stress to establish S-N design curve for the welded lap joint with thin plates below 2mm thickness. In order to do it, the extensive fatigue tests of the welded lap joints with INVAR alloy were performed. With the results, the deign S-N curves for the lap-weld were established by using the reference stresses such as the nominal stress range at the weld throat area, hot spot stress range and element stress range, and compared with regard to the standard deviation. The standard deviation of S-N curves with element stress range was less than that of S-N curves with other reference stresses. In addition, FEA results show the amount of the element stress is less sensitive to mesh size. Based on the results, it can be concluded that the element stress is to be used as the reference stress for the design S-N curves of the welded lap joint.

A Study on Fatigue Life Prediction of Welded Joints Through Fatigue Test and Crack Propagation Analysis (피로실험 및 균열진전 해석을 통한 용접부의 피로수명 예측에 관한 연구)

  • Y.C. Jeon;Y.I. Kim;J.K. Kang;J.M. Han
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.3
    • /
    • pp.93-106
    • /
    • 2001
  • T-joint and hopper knuckle joint models are typical welded joints in ship structure, which are very susceptible to fatigue damage under service condition. Fatigue test and fracture mechanical analysis were performed on these joints to find out characteristics of fatigue behavior. Unified S-N curve was developed from the test results of these two types of joint using hot spot stress concept, and also propagation life was also estimated using Paris' crack propagation law. Residual stress effect on propagation life was considered in calculating propagation life, as was done with thermo-elasto-plastic FE analysis and residual stress intensity factor calculation. Fatigue life of similar kinds of welded joint could be predicted with this unified S-N curve and fracture mechanical analysis technique.

  • PDF

Hot Spot Stress of Concrete-filled Circular Hollow Section N-joints Subjected to Axial Loads (축하중을 받는 콘크리트 충전 원형 강관 N형 이음부의 핫스폿 응력 특성)

  • Kim, In-Gyu;Chung, Chul-Hun;Kim, Young-Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2A
    • /
    • pp.113-120
    • /
    • 2010
  • The use of Concrete filled circular hollow steel section (CFCHS) members in bridge design is a relatively new concept. The most important part of the design and durability of such structures is the design and the construction of the joints. In the design of recently constructed steel-concrete composite bridges using CFCHS truss girders for the main load carrying structure, the fatigue verification of the tubular spatial truss joints was a main issue. Welded CFCHS joints are very sensitive to fatigue because the geometric discontinuities of the welds lead to a high stress concentration. New research done on the fatigue behaviour of such joints has focused on CFCHS N-joints, directly welded, with finite element analysis method. A commercial software, ABAQUS, is adopted to perform the finite element analysis on the N-joints. This paper is main focused on these topics, including hot spot stress.

Hot Spot Analysis on Brake Disc Using Infrared Camera (적외선카메라를 이용한 제동 디스크 열크랙 분석)

  • Kim, Jeong-Guk;Goo, Byeong-Choon;Kwon, Sung-Tae
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.964-968
    • /
    • 2008
  • Infrared thermography using high-speed infrared camera has been recognized as a powerful method for various potential applications, such as nondestructive inspection, failure analysis, stress analysis, and medical fields, due to non-contact, high-speed, and high spatial resolution at various temperature ranges. In this investigation, damage evolution due to generation of hot spots on railway brake disc was investigated using the infrared thermography method. A high-speed infrared camera was used to measure the surface temperature of brake disc as well as for in-situ monitoring of hot spot evolution. From the thermographic images, the observed hot spots and thermal damage of railway brake disc during braking operation were qualitatively analyzed. Moreover, in this investigation, the previous experimental and theoretical studies on hot spots phenomenon were reviewed, and the current experimental results were introduced and compared with theoretical prediction.

  • PDF