• 제목/요약/키워드: hot press forming

검색결과 79건 처리시간 0.026초

열-소성 연계 해석을 이용한 자동차 로어암 부품 개발 (Development of Automobile One-piece Lower-Arm Part by Thermo-Mechanical Coupled Analysis)

  • 손현성;김흥기;최병근;조열래
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.218-221
    • /
    • 2008
  • Hot Press Forming (HPF), an advanced sheet forming method in which a high strength part can be produced by forming at high temperature and rapid cooling in dies, is one of the most successful forming process in producing components with complex geometric shape, high strength and a minimum of springback. In order to obtain effectively and accurately numerical finite element simulations of the actual HPF process, the flow stress of a boron steel in the austenitic state at elevated temperatures has been investigated with Gleeble system. To evaluate the formability of the thermo- mechanical material characteristics in the HPF process, the FLDo defined at the lowest point in the forming limit diagrams of a boron steel has been investigated. In addition, the simulation results of thermo-mechanical coupled analysis of an automobile one-piece lower-arm part are compared with the experimental ones to confirm the validity of the proposed simulations.

  • PDF

열간 압연에서 2단 사이징 프레스 금형에 의한 슬래브의 변형거동 예측 (Deformation Behavior of Slab by Two-Step Sizing Press in a Hot Strip Mill)

  • 이상호;김동환;변상민;박해두;김병민
    • 소성∙가공
    • /
    • 제14권9호통권81호
    • /
    • pp.791-797
    • /
    • 2005
  • Extensive width reduction of slabs is an important technology for achieving continuous production between the steelmaking and hot rolling processes. However, the vertical horizontal rolling process has many disadvantages, e.g., large width deviations and less efficient width reduction. This study was carried out to investigate the deformation of slab by sizing press with two steps die. To do it, dog-bone and camber are discussed in width sizing process considering the deformation behavior according to the deviation of anvil velocity and the deviation of initial slab temperature. In this paper, the various causes of the sizing press phenomena are mentioned for the purpose of understanding of rolling conditions. As a result, the optimal anvil shape having a minimum-forming load is obtained by FE-simulation and ANN.

냉열간 단조기술을 적용한 농기계용 클러치 Jaw 부품 일체화 성형기술 (Integration Forming Technology based on Cold Hot Forging of Clutch Jaw Parts for Farm Machinery)

  • 박동환;한성철
    • 한국생산제조학회지
    • /
    • 제24권5호
    • /
    • pp.489-495
    • /
    • 2015
  • Forging is a manufacturing process involving the shaping of metal using localized compressive forces and the process of deforming metal into a predetermined shape using certain tools and press according to the temperature. Forging provides stronger metal parts than that possible by casting or machining. Conventional clutch jaw parts have been developed through cold forging and precision machining; however, fabrication of integral clutch jaw parts for farm machinery has not been reported yet. These parts were developed by applying a complex forging technology combining cold and hot forging. The integrated forming technology proposed in this study will be useful for reducing the lead-time for manufacturing, improving the accuracy of products, and eliminating the welding process.

핫프레스 공정 기반 CF-PEKK 복합재의 근적외선 고속가열에 의한 열적 열화 반응의 메커니즘 분석 (Analysis of Thermal Degradation Mechanism by Infrared High-speed Heating of CF-PEKK Composites in Hot Press Forming)

  • 이교문;박수정;박예림;박성재;김윤해
    • Composites Research
    • /
    • 제35권2호
    • /
    • pp.93-97
    • /
    • 2022
  • 열가소성 복합재의 핫프레스 성형공정에서 근적외선 가열의 적용은 소재를 성형온도까지 고속가열함으로써 공정 전체의 생산성을 확보할 수 있으나, 고에너지, 높은 성형온도, 고속가열에 의해 소재의 열화가 발생하여 재용융 성능 등의 소재 특성이 저하될 수 있다. 이에 본 연구는 고성능 항공소재로 활발히 연구개발되고 있는 Carbon fiber reinforced Polyetherketoneketone(CF/PEKK) 복합재에 적합한 핫프레스 성형공정의 최적화된 공정조건을 확립하기 위하여 근적외선 고속가열을 적용하였을 때, CF/PEKK 복합재에서 발생할 수 있는 열화 메커니즘과 그 특성을 형태학적, 열적 특성 및 기계적 성능 시험을 통해 평가하였다. 열화 반응에 따른 메커니즘 규명은 광학현미경을 활용하여 PEKK의 결정구조의 형태학적 조사를 기반으로 분석하였다. 그 결과, 열화가 진행됨에 따라 구결정의 크기가 감소하며 최종적으로 완전 열화 시 구결정이 소멸되는 것을 확인하였다. 열적 특성은 용융온도, 결정화온도, 발열량이 열화가 진행됨에 따라 감소하는 경향이 관찰되며, 460℃ 장시간 노출에서 결정구조가 소멸된 것을 확인하였다. 랩전단강도(Lap shear strength)시험 결과, 열화된 표면에서는 낮은 접합강도가 관찰되며, 접합면 분석에서 특정 면에서는 열에 의한 용융 특성이 나타나지 않았다. 결론적으로 CF/PEKK 복합재의 근적외선 고속가열 적용에 있어 특정 온도에서 열화 진행되며, 이에 구결정의 형태학적 변화와 열가소성 소재의 재용융 특성의 저하를 확인하였다.

HPF 적용을 위한 극저탄소강의 강도에 미치는 침탄 열처리의 영향 (Strength Change in Ultra Low Carbon Steel due to Carburizing Heat Treatment for Hot Press Forming)

  • 강수영
    • 대한금속재료학회지
    • /
    • 제50권6호
    • /
    • pp.433-438
    • /
    • 2012
  • Strength change in ultra low carbon steel carburized at $880^{\circ}C$ and $930^{\circ}C$ for 10, 30, 60 and 120 minutes was investigated. The results were analyzed by a tensile test, chemical composition analysis, optical microscopy and scanning electron microscopy. Stress in the 0.5% strain specimen in the tensile test increased as the time treated at $880^{\circ}C$ and $930^{\circ}C$ increased, because the carbon diffusion layer and the martensite of the specimen increased with increasing treatment time. Martensite was found in the ferrite region in the specimen treated at $880^{\circ}C$, which is attributed to grain boundary diffusion.

열간 프레스 성형공정 적용을 위한 극저탄소강의 탄소확산에 미치는 결정립 크기의 영향 (Effects of Grain Size on Carbon Diffusion in an Ultra-Low Carbon Steel for Hot Press Forming)

  • 강수영
    • 대한금속재료학회지
    • /
    • 제50권12호
    • /
    • pp.883-889
    • /
    • 2012
  • Carbon diffusion of ultra low carbon steel treated at $880^{\circ}C$ and $930^{\circ}C$ for 10, 30, 60 and 120 minutes was investigated using optical microscopy, SAM, EPMA, and Micro Vickers. The martensite patterns of the specimens treated at $880^{\circ}C$ and $930^{\circ}C$ were different. Martensite in the ferrite region was found in the specimen treated at $880^{\circ}C$ because of grain boundary diffusion. Such phenomena is explained by a carbon diffusion model.

합판대용(合板代用) 박판상(薄板狀) 복합재(複合材) 제조(製造)에 관(關)한 연구(硏究) (I) - 복합재(複合材) 제조(製造)의 최적조건(最適條件)에 관(關)하여 - (Studies on Manufacture of Thin Composite Panel for Substitute Use of Plywood (I) - On the Optimum Manufacturing Condition of Composites -)

  • 이필우
    • Journal of the Korean Wood Science and Technology
    • /
    • 제23권2호
    • /
    • pp.55-69
    • /
    • 1995
  • The primary objective of this research was to investigate optimum manufacturing condition of thin composite panels composed of sawdust, polyethylene film and polypropylene net. At the study the experiment was designed to make thin board in which sawdust offers effectiveness as core composing material, polyethylene as adhesive with added urea resin, and polypropylene as stiffness and flexibility in the composition panel. 100 types of thin composite panels were manufactured according to press-lam and mat-forming process of various hot pressing conditions(pressure, temperature and time). They were tested and compared with control boards on bending properties(MOR, MOE, SPL, WML), internal bond strength, thickness swelling, linear expansion and water absorption. At the same time the visual inspections of each types of panels were accomplished. The physical and mechanical properties of composite types passed by visual inspection were analyzed by Tukey's studentized range test. From the statistical analysis, the optimum manufacturing condition of thin composite panels were selected. Compared with two manufacturing processes, mat-forming process performed better than press-lam process in all tested properties. The optimum manufacturing conditions resulted from the experiment and statistical analysis were able to determine as following: the press temperature was shown the most good result at 130$^{\circ}C$ in mat forming process and 140$^{\circ}C$ press lam process, the press time 4 min in both processes, but the press pressure was 25-10kg/$cm^2$ in mat forming and 15k/$cm^2$ press lam process.

  • PDF

Performance of Hot-dip Zn-6%Al-3%Mg Alloy Coated Steel Sheet as Automotive Body Material

  • Shimizu, Takeshi;Asada, Hiroshi;Morikawa, Shigeru
    • Corrosion Science and Technology
    • /
    • 제9권2호
    • /
    • pp.74-80
    • /
    • 2010
  • For the purpose of applying a hot-dip Zn-6mass%Al-3mass%Mg alloy coated steel sheet (ZAM) to automotive body materials, a laboratory study of the general properties required for inner and outer panels of automotive bodies was performed. Even with only light coating weight, ZAM showed an excellent corrosion resistance in terms of both cosmetic and perforation corrosion compared to the currently used materials for automotive bodies, GI70 and GA45. In our study, it was confirmed that ZAM exhibits as good as or better properties than GI70 in terms of spot weldability and press formability. Furthermore, since the same corrosion resistance can be achieved with less coating weight by applying ZAM, laser weldability is better than GI and GA.