• Title/Summary/Keyword: hot pepper seed

Search Result 23, Processing Time 0.022 seconds

Effect of Dietary Hot Pepper(Cap8icum annum) Seed on Performance and Egg Quality in Layers (사료내 고추(Capsicum annum)씨가 채란계 생산성과 난질에 미치는 영향)

  • 허준무;고태송
    • Korean Journal of Poultry Science
    • /
    • v.25 no.1
    • /
    • pp.21-30
    • /
    • 1998
  • The effects of dietary levels and feeding period of Korean hot pepper (Capsicum annum) seed on the performance and egg quality were investigated. Rhode Island Red layers of 84 wk of age were fed the experimental diets containing O.O(Control), 0.5, 1.0, 2.0, and 3.0% of HPS, respectively, in individual cages during 10 wk of the feeding period. The dietary hot pepper seed significantly(P<0.05) improved hen-day egg production and daily egg rnass, but reduced egg weight(P<0.05). During the 10 wk of the feeding period, the egg production and daily egg mass improved after 6 or 7 wk of feeding 0.5, 1.0 or 2.0% hot pepper seed diets. When the layers were fed the 3.0% HPS diet, it only took 1 wk to improve the egg production and daily egg mass. In addition, the birds fed 3.0% hot pepper seed diet showed relatively constant egg weight while those of the Control increased gradually as the feeding period passed. The dietary hot pepper seed significantly improved the eggshell thickness, and redness and whole color of egg yolk. The results indicate that dietary hot pepper seed( $\geq$2.0%) may improve the egg production and egg shell thickness, and increase the redness of egg yolk in layers.

  • PDF

Detection of Virus in Fruit and Seed of Vegetables Using RT-PCR (RT-PCR에 의한 과채류 열매 및 종자의 바이러스 검정)

  • 최장경;김혜자;윤주연;박선정;김두욱;이상용
    • Korean Journal Plant Pathology
    • /
    • v.14 no.6
    • /
    • pp.630-635
    • /
    • 1998
  • Tobacco mosaic tobamovirus (TMV), cucumber mosaic cucumovirus (CMV), cucumber green mottle mosaic tobamovirus (CGMMV) and zucchini yellow mosaic potyvirus (ZYMV) from individual fruits and seeds of hot pepper and cucumber were detected by the reverse transcription-polymerase chain reaction (RT-PCR). The dilution end-points for RT-PCR in curde sap from TMV. and CMV - infected hot pepper leaves and CMV - and CGMMV-infected cucumber leaves were 10-5. However, the amount of PCR product obtained from preparation of ZYMV-infected cucumber leaf was 10-fold lower than those of CMV or CGMMV-infected cucumber leaves. In hot pepper, both TMV and CMV were detected in all parts of the fruit wall tissue, but the yields of PCR products in the fruit stalk and its surrounding tissues were higher than those of the end parts of the fruit. On the other hand, in cucumber fruit infected with CMV, CGMMV or ZYMV, the fruit wall tissue and seed located in both stalk and end parts showed higher yields of PCR products than those of intermediate parts. Of five viruses that were analysed, only TMV in hot pepper seed, and CGMMV and CMV in cucumber seed were detected in testa parts.

  • PDF

Effect of Hot Pepper Seed Oil, Capsaicin, and Alpha-Tocopherol on Thermal Oxidative Stability in Lard and Soy Bean Oil (고추씨유, 캡사이신 및 토코페롤의 첨가가 돈지와 대두유의 산화안정성에 미치는 영향)

  • Lee, Chi-Ho;Han, Kyu-Ho;Kim, Ah-Young;Lee, Seul-Ki;Hong, Go-Eun;Pyun, Chang-Won;Choi, Kang-Duk;Yang, Cheul-Young
    • Food Science of Animal Resources
    • /
    • v.28 no.5
    • /
    • pp.660-666
    • /
    • 2008
  • This study was designed to compare the thermal oxidative stability of lard, soy bean oil, and hot pepper seed oil for 0-3 d at $100^{\circ}C$, and to evaluate the effect of capsaicin on thermal oxidative stability in lard and soy bean oil. As result, thermal oxidation stability was shown in the order hot pepper seed oil>soy bean oil>lard for 0-3 d at $100^{\circ}C$. In blended oils, hot pepper seed oil effectively inhibited lipid oxidation when mixed with lard than soy bean oil by showing the ratio of 30% pepper seed oil plus 70% lard and 60% pepper seed oil plus 40% soy bean oil inhibited lipid oxidation during storage periods. And to investigate the antioxidative effect of antioxidants such as capsaicin and alpha-tocopherol in hot pepper seed oil, 1,200 and 2,400 ppm capsaicin, or 0.3% alpha-tocopherol were added in soy bean oil and lard and stroed for 0-3 d at $100^{\circ}C$. Capsaicin inhibited lipid oxidation in lard but not in soy bean oil, however alpha-tocopherol exhibited a prooxidaton effect in soybean oil. Therefore, it suggests that the application of hot pepper seed oil or capsaicin in lard may be better for thermal oxidative stability.

Studies on the Changes of Vitamin C content in the Hot Green Pepper Fruits during the Circulation Periods (풋고추의 유통과정중 Vitamin C 함량의 변화)

  • 김상옥
    • Journal of the Korean Home Economics Association
    • /
    • v.19 no.3
    • /
    • pp.41-45
    • /
    • 1981
  • This study was carried out to observe the changes of Vitamin C content and to preserve the quality for the circulation periods of hot green pepper fruits wrapped with polyethylene film under the indoor temperature, as well as to find the proper time for harvest of hot green pepper fruits as a hot taste food and vegetable. the results obstained were as follows: 1. The consignment rate of hot green pepper fruits was highest, 60.2% on the 25th day after flowering, the nest 25.4% on the 20 th day, 10.3% on the 30th day and 4.1% on the 35th day. 2. the content of Vitamin C I each pepper fruits was highest o the 30th day, considerably high on the 25th day and 20th day. 3. The total content of Vitamin C in each part of hot green pepper fruits; the content in pericarp was much higher than in placenta and seed, and that of hydro type Vitamin C was almost the same. 4. The reduction rate of vitamin C during circulation periods was highest on the 3rd day; 42% in pericarp, 50% in placenta, 65% in seed. But in the package wrapped up with polyethylene film, the reduction rate in the same period was 5% in pericarp, which was very low in reduction, and those in placenta and seed were almost the same as in the unwrapped state.

  • PDF

Time-intensity Evaluation of Hot Taste of Red Pepper Seed Extracts as Affected by Mixing Ratio of Red Pepper Seed Extracts (고춧가루와 고추씨 추출액의 혼합 비율에 따른 매운맛의 시간차 강도 평가)

  • Han, Mee-Young;Ko, Soon-Nam;Kim, Woo-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.1679-1682
    • /
    • 1999
  • This study was carried out to investigate the effect of hot taste of red pepper seed (RPS) extracts in terms of mixing ratio with red pepper powder (RPP) extracts. As the mixing ratio of RPP extracts to RPS extracts increased, the solid yield, viscosity, turbidity and Hunter a and b values were increased but the L values was decreased. The time-intensity curve from sensory evaluation showed that the hot taste of RPP extracts reached maximum point in short time and decreased fastly while that of RPS slowly developed and maintained the intensity with a little decrease in the tested time. The mixing ratio of RPP and RPS responded the properties of their individual hot taste.

  • PDF

Development of the Seasoning Oil for Replacing Red Pepper Seed Oil : Manufacturing of Red Pepper Seasoning Oil (고추씨기름 대체 향미유 개발에 관한 연구 : 제2보. 고추향미유의 제조)

  • 구본순;김덕숙
    • Food Science and Preservation
    • /
    • v.11 no.2
    • /
    • pp.142-147
    • /
    • 2004
  • To develop the red pepper seasoning oil(RPSO), corn oil was used as the base oil. For generating hot taste and color, oleoresin capsicum and oleoresin paprika were mixed to base oil (SSO1). Then, for generating black red color, natural black pigment that is extracted from gardenia and kaoliang was added SSO1 to prepare SSO2. To magnify the hot taste, extract of red pepper, phosphoric salt and emulsifier (monogly 20) were. then added to SSO2 to prepare SSO3. This SSO3 was very similar to real red pepper seed oil as a color and taste, but its hot flavor was not enough. To resolve this problem, we mixed about 5% of another oil(SSO4), which was mingled and roasted red pepper powder with corn oil, to SSO3. In terms of above experiment, RPSO was obtained.

Development of a Simultaneous Seed Separation and Drying Method of Red Pepper -Part II. Dehydration Effect on the Impact Seed Separation of Red Pepper- (고추의 동시탈종(同時脫種) 건조방법(乾燥方法)의 개발(開發)에 관한 연구 -제2보 열풍건조(熱風乾燥)가 고추씨의 충격분리(衝擊分離)에 미치는 영향-)

  • Chun, Jae-Kun;Park, Sang-Ki
    • Korean Journal of Food Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.68-72
    • /
    • 1977
  • Seed separation out of fresh red pepper by impact methods was effective but impossible to separate over 45% of seed. For the increase of seed separation, dehydration effect was studied with the slices of pepper. Heat deformation during the course of drying at hot air of 0. 61m/sec velocity at temperature of $65^{\circ}C$, increased the separation up to 93% with a halfcut pepper. Seed separation was remarkably different upon the location of cut, but it was completed prio tothe completion of drying in every cutting orientations. From these results a simultaneous seed separation and drying operation techniques is successfully developed.

  • PDF

Extraction conditions for preparation of natural seasoning of red pepper seed (고추씨 향신조미료 제조를 위한 추출 조건)

  • 한미영;고순남;김우정
    • Korean journal of food and cookery science
    • /
    • v.15 no.4
    • /
    • pp.370-376
    • /
    • 1999
  • The red pepper seeds(RPS), an industrial waste produced from red pepper powder industry, were investigated for its possible use as natural hot taste seasoning. The RPS was extracted with water with addition of salt, sugar, phosphate and citric acid at 70-100$^{\circ}C$ Effects of preheat treatments of steaming at 100$^{\circ}C$ and roasting at 215$^{\circ}C$ and 330$^{\circ}C$ were also studied on the flavor of the RPS extracts. The results showed that steaming and roasting increased the solid yield and reduced the turbidity. The hot flavor of RPS extracts was generally decreased by steaming and roasting. Extraction of RPS at the temperature range of 70-100$^{\circ}C$ for 10-60 minutes showed that solid yield were relatively high of 27% at 80$^{\circ}C$ for 30 minutes with the highest score of hot flavor. When the extraction was carried out with addition of NaCl, sucrose, Na$_2$HPO$_4$ and citric acid, the solid yield was little affected by their addition except a little increase by 0.5% NaCl and 0.2% Na$_2$HPO$_4$ and hot flavor was little affected.

  • PDF

Evaluation of Hot Water Treatment for Disinfection of Vegetable Seeds for Organic Farming (채소 종자별 온탕침지 종자소독 효과검정)

  • Lee, Ji-Hyun;Shen, Shun-Shan;Park, Yong-Ju;Ryu, Kyung-Yul;Jee, Hyeong-Jin
    • Research in Plant Disease
    • /
    • v.13 no.3
    • /
    • pp.157-163
    • /
    • 2007
  • Hot water treatment that is the most appropriate seed disinfection method for organic vegetable farming was evaluated in this study. Among the leafy vegetable seeds lettuce that was the most sensitive to hot water was suitable to treat at $45^{\circ}C$ for 25 min, while Chinese cabbage and radish seeds were optimally treated at $50^{\circ}C$ for 25 min. The treatments resulted in similar or higher seed germination rate than non-treated seeds and promoted plant growth. In addition, fungi such as Alternaria, Aspergillus, Penicillium, or Mucor grown on the seeds were suppressed over 90% and the bacterial growth on lettuce seeds reduced 98.5% by the treatment. Among the fruit vegetable seeds pumpkin that was vulnerable to hot water was suitable to treat at $50^{\circ}C$ for 15 min, while cucumber and hot pepper seeds revealed optimum treatment at $50^{\circ}C$ for 25 min as chinese cabbage and radish. The treatment also showed similar or higher seed germination rate and growth than non-treated seeds. Furthermore, fungi such as Rhizopus, Aspergillus, Penicillium or Mucor grown on the seeds reduced from 72.0% to 95.4%. The bacterial growth on cucumber and red pepper seeds was suppressed from 65.5% to 86.0% by the treatment. Results indicated that the hot water treatment is practical for disinfection of organic vegetable seeds and the optimum temperature and soaking time varied among the seeds.

Analysis of Thermotolerance in Hot Pepper Using the Antiserum Against Carrot HSP17

  • Hwang, Eun-Young;Hwang, Cheol-Ho;Yoo, Il-Woong
    • Journal of Plant Biotechnology
    • /
    • v.3 no.1
    • /
    • pp.7-12
    • /
    • 2001
  • An antiserum against the carrot HSP17 (17 KDa heat shock protein) was raised using the HSP17 purified after being expressed in a recombinant E.coli in order to develop an assay system for thermotolerance in crops. The DCHsp17.7 including the coding sequence corresponding to a carrot HSP17 protein was recombined within pET-32(b) vector and achieved a maximum expression in 4 hours after an induction in E.coli. The purified DCHsp17.7 was used as an antigen to generate the corresponding antibody. The polyclonal antiserum was confirmed for it's specificity only to the low molecular weight (1mw) HSP. Besides, the possibilities to use the antiserum to interact with 1mwHSPs from other plants such as rice, cucumber, tomato, and hot pepper were examined to be plausible. To reveal any specific correlation between the amounts of 1mwHSP expressed upon HS conditions and an acquisition of thermotolerance two different approaches have been applied. first, it has been shown that only the pre-HS conditions inducing the synthesis of HSP17 allowed for the seedlings to achieve an thermotolerance and to survive the following lethal condition. Second, a western analysis using 15 different collected lines of hot peppers was performed to distinguish each other in terms of the amount of 1mwHSP. The results indicated that all 14 hot pepper lines were able to synthesize HSPs in response to an exposure to HS conditions and the amounts of the proteins synthesized at different HS temperatures were variable among the lines. There are several different patterns of 1mwHSP synthesized as a function of temperature increase observed and their correlation to physiological aspects of thermotolerance remains to be analyzed.

  • PDF