• Title/Summary/Keyword: hot melt

Search Result 168, Processing Time 0.026 seconds

On the new mold structure with multi-point gate for filling-balance mold (사출성형시 불균형 충전에 관한 다구찌 실험계획법을 이용한 성형공정의 최적화)

  • Hong, Youn-Suk;Han, Dong-Hyup;Jeong, Yeong Deug
    • Design & Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.13-16
    • /
    • 2007
  • Almost all injection molds have multi-cavity runner system for mass production, which are designed with geometrically balanced runner system in order to accomplish filling balance between cavity to cavity during processing. However, even though geometrically balanced runner is used, filling imbalance have been observed. Filling imbalance could be decreased by modifying processing conditions such as injections rate, mold temperature, injection pressure, melt temperature that are related to shear, viscosity. In this study, a series of experiment was conducted to investigate filling imbalance variation when modifying runner layout and polymer and to determine which processing condition influences as the primary cause of filling imbalance in geometrically balanced runner system.

  • PDF

Isothermal Compression Molding for a Polymer Optical Lens (등온압축성형공법을 이용한 폴리머 렌즈 성형)

  • Oh, Byung-Do;Kwon, Hyun-Sung;Kim, Sun-Ok
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.996-999
    • /
    • 2008
  • Aspheric polymer lens fabrication using isothermal compression molding is presented in this paper. Due to increasing definition of an image sensor, higher precision is required by a lens which can be used as a part of an imageforming optical module. Injection molding is a factory standard method for a polymer optical lens. But achievable precision using injection molding has a formidable limitation due to the machining of complex mold structure and melting and cooling down a polymer melt under high pressure condition during forming process. To overcome the precision requirement and limitation using injection molding method, isothermal compression molding is applied to fabrication of a polymer optical lens. The fabrication condition is determined by numerical simulations of temperature distribution and given material properties. Under the found condition, the lens having a high precision can successfully be reproduced and does not show birefringence which results often in optical degradation.

  • PDF

Joining of Polymer Materials with Ultrasonic Welding (초음파 용접을 이용한 합성수지의 결합)

  • 이철구;정규창
    • Journal of Welding and Joining
    • /
    • v.16 no.2
    • /
    • pp.48-56
    • /
    • 1998
  • This study was performed to find the best bonding conditions by comparing mechanical properties in thermoplastic resin of polyethylene (PE) and polyamide (PA) adhesion. Following results were obtained from the tests with varying welding time and welding pressure. Satisfactory adhesion was executed in ultrasonic welding for the same materials of PE and PA. The best welding conditions were found to be welding time of 1 second, welding pressure of 250kPa for PE-PE weding, 2 second and 350kPa for PA-PA welding. Welding time and welding pressure end to increase with the increase of materials strength. Dissimilar materials were adhered when adhesion and ultrasonc welding were performed simultaneously. The observation of the structure of ultrasonic welding area with microscope showed differenticated structures between well adhered region and badly adhered region.

  • PDF

The Effect of Corona Treated on Laminating Film and Its Analytical Study by SEM (라미네이팅 필름의 코로나 처리 효과와 주사 전자현미경을 이용한 해석)

  • Kim, Jong-Gyu;Kim, Yang-Pioung
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.26 no.2
    • /
    • pp.15-30
    • /
    • 2008
  • Studies were carried out the phenomenal observation on the effect of corona treated hotmelt laminating film in process of manufacture by 2 kinds of experiments. These are as follow: 1) In order to verify the treatment reducing value of dynes and dynes durability with the lapse of time, it was checked dynes of a pair of 4 bar discharge electrode with 9 one for 144 hr., and it show results that 9 bar discharge electrode has higher initial dynes as well as keep up 48 dynes durability long than 4 one. 2) Drawn an inference from 3 actions -Chemical-Physical-Mechanical, on laminating film in terms of SEM's observation that are the adhesive status in boundary of corona treated base film, extrusion coating hotmelt layer, and configuration of hotmelt surface after corona treated. In tandem system, EVA layers adhesion keep its stability without corona discharge treatment.

  • PDF

Improvement of Flow Characteristics for Thin-Wall Injection Molding by Rapid Beating (급속 가열에 의한 박육 사출성형의 유동특성 개선)

  • Kim, Byung;Park, Keun
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.09a
    • /
    • pp.9-12
    • /
    • 2005
  • The rapid thermal response (RTR) molding is a novel process developed to raise the temperature of mold surface rapidly to the polymer melt temperature prior to the injection stage and then cool rapidly to the ejection temperature. The resulting filling process is achieved inside a hot mold cavity by prohibiting formation of frozen layer so as to enable thin wall injection molding without filing difficulty. The present work covers flow simulation of thin wall injection molding using the RTR molding process. In order to take into account the effects of thermal boundary conditions of the RTR mold, coupled analysis with transient heat transfer simulation is suggested and compared with conventional isothermal analysis. The proposed coupled simulation approach based on solid elements provides reliable thin wall flow estimation fur both the conventional molding and the RTR molding processes

  • PDF

Capability of Thermal Field-Flow Fractionation for Analysis of Processed Natural Rubber

  • Lee, Seong Ho;Eun, Cheol Hun;Anthony R. Plepys
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.1
    • /
    • pp.69-74
    • /
    • 2000
  • Applicability of Thermal field flow fractionation (ThFFF) was investigated for the analysis of masticated natural rubber (NR) adhesives produced bya hot melt mastication process. An optimum ThFFF condition for NR analysis was found by using tetrahydrofuran (THF) as a solvent/carrier and a field-programming. Low flowrate (0.3 mL/min) was used to avoid stopping the flow for the sample relaxation. Measured molecular weight distribution was used to monitor degradation of rubber during the mastication process. Rubber samples collected at three different stages of the mastication process and were analyzed by ThFFF. It was found that in an anaerobic process rubber degradation occurs at the resin-mixing (compounding) zone as well as in the initial break-down zone, while in an aerobic process most of degradation occurs at the initial breakdown zone. It was also found that E-beam radiation on NR causes a slight increase in the NR molecular weight due to the formation of a branched structure.

Stratified steam explosion energetics

  • Jo, HangJin;Wang, Jun;Corradini, Michael
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.95-103
    • /
    • 2019
  • Vapor explosions can be classified in terms of modes of contact between the hot molten fuel and the coolant, since different contact modes may affect fuel-coolant mixing and subsequent vapor explosion energetics. It is generally accepted that most vapor explosion phenomena fall into three different modes of contact; fuel pouring into coolant, coolant injection into fuel and stratified fuel-coolant layers. In this study, we review previous stratified steam explosion experiments as well as recent experiments performed at the KTH in Sweden. While experiments with prototypic reactor materials are minimal, we do note that generally the energetics is limited for the stratified mode of contact. When the fuel mass involved in a steam explosion in a stratified geometry is compared to a pool geometry based on geometrical aspects, one can conclude that there is a very limited set of conditions (when melt jet diameter is small) under which a steam explosion is more energetic in a stratified geometry. However, under these limited conditions the absolute energetic explosion output would still be small because the total fuel mass involved would be limited.

Liquid Crystalline Thermoset Films Based on Wholly Aromatic Copolymers (전방향족 공중합체의 열경화성 액정필름)

  • Moon, Hyun-Gon;Ahn, Yong-Ho;Chang, Jin-Hae
    • Polymer(Korea)
    • /
    • v.34 no.4
    • /
    • pp.369-375
    • /
    • 2010
  • We used melt polymerization method to prepare a series of aromatic liquid crystals (LCs) based on aromatic ester and amide units with the reactive methyl-maleimide end group, and then the resulting thermally cross-linked LCs to produce LC thermoset films by means of solution casting and the followed heat treatment. The synthesized LCs and LCTs were characterized by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), thermomechanical analysis (TMA), X-ray diffractometry (XRD), and polarizing optical microscopy (POM) with a hot stage. All of the LCs prepared by melt polymerization method formed smectic mesophases. The thermal properties of the LC and LCT films were strongly affected by the mesogen units in the main chain structures. The thermal expansion coefficients of samples were in the range of 27.72~50.95 ppm/$^{\circ}C$.

Hot melt extruded-based nano zinc as an alternative to the pharmacological dose of ZnO in weanling piglets

  • Oh, Seung Min;Kim, Min Ju;Hosseindoust, Abdolreza;Kim, Kwang Yeol;Choi, Yo Han;Ham, Hyung Bin;Hwang, Sung Jun;Lee, Jun Hyung;Cho, Hyun Jong;Kang, Wei Soo;Chae, Byung Jo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.6
    • /
    • pp.992-1001
    • /
    • 2020
  • Objective: This study was conducted to investigate the effects of hot-melt extruded ZnO nano-particles (HME-ZnO) as an alternative for P-ZnO on growth performance, nutrient digestibility, Zn bioavailability, intestinal microbiota, and intestinal morphology of weanling pigs. Methods: A total of 450 piglets (Landrace×Yorkshire×Duroc) were randomly allotted to five treatments based on initial body weight and sex. The experimental diets were fed in a meal form as phase 1 from d 0 to 14 and phase 2 from d 15 to 28. Treatments were the control diet without ZnO supplementation, the diet containing 2,500 ppm Zn as ZnO, and three diets containing 500, 1,000, or 2,500 ppm Zn as HME-ZnO. Results: The overall result showed a higher (p<0.01) average daily gain in weanling pigs fed ZnO-supplemented diets in comparison to the control diet. There was a decrease (p<0.01) in fecal score in the ZnO-supplemented diets. Dietary supplementation of ZnO improved (p<0.05) crude protein digestibility. The weanling pigs fed the P-ZnO diet had a lower (p<0.01) Zn digestibility in the feces than HME-ZnO supplemented treatments. Weanling pigs fed diets supplemented with ZnO had greater (p<0.05) Lactobacillus spp. populations and lower Clostridium spp. (p<0.05) and Coliforms (p<0.01) populations in the ileum. Weanling pigs fed diets supplemented with increasing concentrations of HME-ZnO linearly decreased Clostridium spp. (p<0.05) and Coliforms (p<0.01) in the ileum. Lower (p<0.05) Clostridium spp. and Coliforms counts in the colon were observed in pigs fed with ZnO-supplemented diets. Weanling pigs fed diets supplemented with ZnO showed a greater (p<0.01) villus height in the duodenum. Conclusion: Dietary supplementation of HME-ZnO and P-ZnO showed a potential to improve the digestibility of protein, intestinal Coliform and Clostridium, villus height in duodenum and ileum. Moreover, HME-ZnO showed a higher Zn digestibility compared with P-ZnO.

Instrumental Analysis of Deposits on Paper Machine and Holes/Spots in Paper (제지공정 침착이물질 및 종이내 불순물 성분의 기기분석)

  • Ma, Geum-Ja;Lee, Bok-Jin
    • Applied Chemistry for Engineering
    • /
    • v.9 no.1
    • /
    • pp.135-140
    • /
    • 1998
  • The constituents of deposits on paper machine and holes/spots in paper have been analyzed by a combination of analytical techniques, such as FTIR, Py-GC-MS, and EDS. FTIR spectroscopy was used prior to Py-GC-MS and EDS analysis, as a preliminary analysis. The analysis of organic components was carried out with a pyrolysis unit connected to a GC-MS, and inorganic components in ash were analyzed by SEM equipped with an EDS analyzer after pyrolysis at $590^{\circ}C$. The deposits on the dryer section were complex pitch, which was the mixture of the organic components of fatty acid ester and starch, and the inorganic components of talc, clay, and calcium carbonate. The complex pitch was estimated to come from the coated broke. We knew the deposits on the metering rod of sym-sizer were associated with the interaction of unstable alkyl keten dimer(AKD) and $CaCO_3$. The compositions of holes or spots varied considerably and were associated with chemical interaction within the system. The holes, spots, and blotches in the finished paper were PE and PP from pulp sources, complex pitch that were caused by the interaction of the different additives in the system, polymer such as flexible PVC that was used for the prop of palette, and hot melt as adhesives that came from the inadequate handling of broke. In addition, we identified that poly(caprolactam) which is used for forming fabrics or press felts, could be mixed with the raw materials by accident and results in streaks on coating.

  • PDF