• Title/Summary/Keyword: hot melt

Search Result 168, Processing Time 0.03 seconds

Characterization of Itraconazole Semisolid Dosage Forms Prepared by Hot Melt Technique

  • Shim, Sang-Young;Ji, Chang-Won;Sah, Hong-Kee;Park, Eun-Seok;Lee, Beom-Jin
    • Archives of Pharmacal Research
    • /
    • v.29 no.11
    • /
    • pp.1055-1060
    • /
    • 2006
  • The objective of this study was to formulate itraconazole semisolid dosage forms and characterize their physicochemical properties. Itraconazole and excipients such as polysorbate 80, fatty acids, fatty alcohols, oils and organic acids were melted at $160^{\circ}C$. The fused solution was then cooled immediately at $-10^{\circ}C$ to make wax-like semisolid preparations. Their physicochemical attributes were first characterized using differential scanning calorimetry, Fourier transform infrared spectroscopy and nuclear magnetic resonance spectrometry. The solubility of itraconazole in semisolid preparations and their dispersability in the simulated gastric fluid were also determined. Our semisolid preparations did not show any distinct endothermic peak of a crystalline form of itraconazole around $160-163^{\circ}C$. This suggested that it was changed into amorphous one, when it was formulated into semisolid preparations. In addition, the distinctive functional peaks and chemical shifts of itraconazole were well retained after processing into semisolid preparations. It could be inferred from the data that itraconazole was stable during incorporation into semisolid preparations by the hot melt technique. In particular, itraconazole semisolid preparations composed of polysorbate 80, fatty acids and organic acids showed good solubility and dissolution when dispersed in an aqueous medium. It was anticipated that the semisolid dosage forms would be industrially applicable to improving the bioavailability of poorly water-soluble drugs.

Fabrication and Properties of Reaction Bonded SiC Hot Gas Filter Using Si Melt Infiltration Method (용융 Si 침윤방법에 의한 반응소결 탄화규소 고온가스 필터의 제조 및 특성)

  • 황성식;김태우
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.9
    • /
    • pp.891-896
    • /
    • 2003
  • Novel fabrication technique was developed for high strength Reaction-Bonded SiC (RBSC) hot gas filter for use in IGCC (Integrated Gasification Combined Cycle) system. The room and high temperature fracture strengths for Si-melt infiltrated reaction-bonded SiC were 50-123, and 60-66 MPa, respectively. The average pore size was 60-70 $\mu\textrm{m}$ and the porosity was about 34 vol%. RBSC infiltrated with molten silicon showed improved fracture strength at high temperature, as compared to that of clay-bonded SiC, due to SiC/Si phase present within SiC phase. The thickness for SiC/Si phase was increased with increasing powder particle size of SiC from 10 to 34 $\mu\textrm{m}$. Pressure drop with dust particles showed similar response as compared to that for Schumacher type 20 filter. The filter fabricated in the present study showed good performance in that the filtered powder size was reduced drastically to below 1 $\mu\textrm{m}$ within 4 min.

Effects of hot-melt extruded nano-copper on the Cu bioavailability and growth of broiler chickens

  • Lee, JunHyung;Hosseindoust, Abdolreza;Kim, MinJu;Kim, KwangYeol;Kim, TaeGyun;Moturi, Joseph;Chae, ByungJo
    • Journal of Animal Science and Technology
    • /
    • v.63 no.2
    • /
    • pp.295-304
    • /
    • 2021
  • This study was aimed to investigate the Cu bioavailability, growth response, digestibility of nutrients, and blood metabolites of broiler chicks fed CuSO4 in nano or common forms. A total of 720 broiler chickens were distributed between eight treatments according to a completely randomized design. There were 8 treatments and 6 replicates in each treatment with 15 birds/replicate. The treatments were divided into common copper sulfate at the doses of 16 ppm, 40 ppm, 80 ppm, and 120 ppm (INO) and hot-melt extruded copper sulfate at the doses of 16 ppm, 40 ppm, 80 ppm, and 120 ppm (HME-Cu). The experiment was operated for 35 days in 2 phases (phase 1, d 0 to 14; and phase 2, d 15 to 35). No significant differences were shown in growth performance, feed intake, FCR, and nutrient digestibility among the treatments. The concentration of Cu in the serum was increased in the HME-Cu broilers compared with the INO broilers at phase 2. A linear increase was observed in the concentration of Cu in the liver in broilers fed INO diets, however, no significant differences were observed by the supplementation of HME-Cu levels. The linear increase was detected in the content of Cu in excreta in the INO and HME-Cu treatments by increasing the dietary Cu content. The HME-Cu treatments showed a lower Cu concentration in the excreta compared with the INO treatments. The higher bioavailability of Cu in HME form can decrease the recommended dose of Cu in broiler diets.

Styrene-free Synthesis of Flame-retardant Vinyl Ester Resin Films for Hot-melt Prepreg Process (핫멜트 프리프레그 공정용 난연성 비닐에스터 수지 필름의 무 스티렌 합성)

  • Jiseon, Kang;Minji, Kim;Mongyoung, Huh;Seok Il, Yun
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.412-418
    • /
    • 2022
  • Flame-retardant vinyl ester (VE) resin films were developed from the mixtures of brominated and non-brominated epoxy resins via esterification with methacrylic acid without reactive diluents. The films were used to fabricate carbon fiber (CF) prepregs via a hot melt impregnation process. The viscosity of VE resins suitable for film production was optimized by mixing low-viscosity bisphenol-A and high-viscosity brominated bisphenol-A epoxy precursors. Increasing the bromine content of the cured VE resin further increased the limited oxygen index (LOI) (39%), storage modulus (2.4 GPa) at 25℃ and residual carbonization (16.1%) values compared to non-brominated VE. Manual layup of as-prepared VE prepregs with subsequent curing led to the successful fabrication of CF-reinforced composites with high tensile and flexural strength. The results from the study hold high promise for a styrene-free, environmentally friendly VE composite process in the future.

A Study on Silane Crosslinking Process of Polypropylene for Enhanced Impact Strength (실란 가교 반응을 이용한 폴리프로필렌의 충격강도 향상에 관한 연구)

  • Kang, Min-Soo;Park, Sung-Ho;Kim, Ki-Sung;Bae, Jong-Rak;Jeon, Oh-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.69-73
    • /
    • 2010
  • The melt grafting of unsaturated silanes onto polypropylene (PP) in a twin-screw extruder and crosslinking in hot water were studied to enhance impact strength of polypropylene. The influence of grafting formulations on the melt flow rates of grafted PP and the gel percentages of crosslinked PP was investigated. 3-methacryloylpropyltrimethoxysilane (VMMS) unsaturated silane monomer was used. Benzoyl peroxide, (BPO) and Dicumyl peroxide (DCP) were used as an initiator. When benzoyl peroxide (BPO) was used as an initiator, higher gel percentage and impact strength than those of DCP has been observed. The maximum impact strength was obtained with 0.7 phr of BPO and 2phr of VMMS. The value is 8.7 kgf-cm/cm and it is on a parity with the value of with 20 phr of EOR mixed to PP.

Nanocomposite Magnetic Materials

  • Ludwig Schultz;Alberto Bollero;Axel Handstein;Dietrich Hinz;Karl-Hartmut Muller;Golden Kumar;Juergen Eckert;Oliver Gutfleisch;Anke Kirehner Aru Yan
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.381-393
    • /
    • 2002
  • Recent developments in nanocrystalline and nanocomposite rare earth-transition metal magnets are reviewed and emphasis is placed on research work at IFW Dresden. Principal synthesis methods include high energy ball milling, melt spinning, mold casting and hydrogen assisted methods such as reactive milling and hydrogenation-disproportionation-desorption-recombination. These techniques are applied to NdFeB-, PrFeB- and SmCo-type systems with the aim to produce high remanence magnets with high coercivity. Concepts of maximizing the energy density in nanostructured magnets by either inducing a texture via anisotropic HDDR or hot deformation or enhancing the remanence via magnetic exchange coupling are evaluated. With respect to high temperature applications melt spun $Sm(Co_{0.74}Fe_{0.1}Cu_{0.12}Zr_{0.04})_{7.5}$ ribbons were prepared, which showed coercivities of up to 0.53 T at 50$0^{\circ}C$. Partially amorphous $Nd_{60}Fe_xCo_{30-x}Al_{10}(0{\leq}x{\leq}30)$ alloys were prepared by copper mold casting. The effect of transition metal content on the glass-forming ability and the magnetic properties was investigated. The $Nd_{60}Co_{30}Al_{10}$ alloy exhibits an amorphous structure shown by the corresponding diffraction pattern. A small substitution of Co by 2.5 at.% Fe results In the formation of Fe-rich crystallites embedded in the Nd-rich amorphous matrix. The Fe-rich crystallites show hard magnetic behaviour at room temperature with a coercivity value of about 0.4 T, relatively low saturation magnetization and a Curie temperature of 500 K.

Behavior of Graphite and Formation of Intermetallic Compound Layer in Hot Dip Aluminizing of Cast Iron (주철 - 알루미늄 합금의 Hot Dip Aluminizing시 흑연 및 금속간화합물 층의 형성 거동)

  • Han, Kwang-Sic;Kang, Yong-Joo;Kang, Mun-Seok;Kang, Sung-Min;Kim, Jin-Su;Son, Kwang-Suk;Kim, Dong-Gyu
    • Journal of Korea Foundry Society
    • /
    • v.31 no.2
    • /
    • pp.66-70
    • /
    • 2011
  • Hot dip aluminizing (HDA) is widely used in industry for improving corrosion resistance of material. The formation of intermetallic compound layers during the contact between dissimilar materials at high temperature is common phenomenon. Generally, intermetallic compound layers of $Fe_2Al_5$ and $FeAl_3$ are formed at the Al alloy and Fe substrate interface. In case of cast iron, high contact angle of graphite existed in the matrix inhibits the formation of intermetallic compound layer, which carry with it the disadvantage of a reduced reaction area and mechanical properties. In present work, the process for the removal of graphite existed on the surface of specimen has been investigated. And also HDA was proceeded at $800^{\circ}C$ for 3 minutes in aluminum alloy melt. The efficiency of graphite removal was increased with the reduction of particle size in sanding process. Graphite appears to be present both in the region of melting followed by re-solidification and in the intermetallic compound layer, which could be attributed to the fact that the surface of cast iron is melted down by the formation of low melting point phase with the diffusion of Al and Si to the cast iron. Intermetallic compound layer consisted of $Fe(Al,Si)_3$ and $Fe_2Al_5Si$, the layer formed at cast iron side contained lower amount of Si.

Preparation of n-type Bi-Te-Se-based Thermoelectric Materials with Improved Reliability via hot Extrusion Process (열간압출을 이용한 고신뢰성 n형 Bi-Te-Se계 열전소자 제조)

  • Hwang, Jeong Yun;Kim, Yong-Nam;Lee, Kyu Hyoung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.2
    • /
    • pp.45-49
    • /
    • 2019
  • Herein we developed the hot extrusion technology to prepare n-type Bi-Te-Se-based thermoelectric materials with high reliability. Starting ingot was fabricated via melt-solidification process, then pulverized it into powders (${\sim}30{\mu}m$) by using high energy ball milling. By optimization of mold design and temperature-pressure conditions for hot extrusion, dense extrudate of 1.8 mm in diameter with high 00l orientation could be obtained from disc-shape compacted powders (20 mm in diameter). High power factor ${\sim}4.1mW/mK^2$ and enhanced mechanical strength ~50 MPa were simultaneously observed at 300 K.

Hot Corrosion Behavior of Plasma Sprayed 4 mol% Y2O3-ZrO2 Thermal Barrier Coatings with Volcanic Ash (플라즈마 용사법으로 제작된 4mol% Y2O3-ZrO2 열차폐코팅의 화산재에 의한 고온열화거동)

  • Lee, Won-Jun;Jang, Byung-Koog;Lim, Dae-Soon;Oh, Yoon-Suk;Kim, Seong-Won;Kim, Hyung-Tae;Araki, Hiroshi;Murakami, Hideyuki;Kuroda, Seiji
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.353-358
    • /
    • 2013
  • The hot corrosion behavior of plasma sprayed 4 mol% $Y_2O_3-ZrO_2$ (YSZ) thermal barrier coatings (TBCs) with volcanic ash is investigated. Volcanic ash that deposited on the TBCs in gas-turbine engines can attack the surface of TBCs itself as a form of corrosive melt. YSZ coating specimens with a thickness of 430-440 ${\mu}m$ are prepared using a plasma spray method. These specimens are subjected to hot corrosion environment at $1200^{\circ}C$ with five different duration time, from 10 mins to 100 h in the presence of corrosive melt from volcanic ash. The microstructure, composition, and phase analysis are performed using Field emission scanning electron microscopy, including Energy dispersive spectroscopy and X-ray diffraction. After the heat treatment, hematite ($Fe_2O_3-TiO_2$) and monoclinic YSZ phases are found in TBCs. Furthermore the interface area between the molten volcanic ash layers and YSZ coatings becomes porous with increases in the heat treatment time as the YSZ coatings dissolved into molten volcanic ash. The maximum thickness of this a porous reaction zone is 25 ${\mu}m$ after 100 h of heat treatment.

In vitro Anticancer Activity of Paclitaxel Incorporated in Low-melting Solid Lipid Nanoparticles

  • Lee, Mi-Kyung;Yang, Jae-Heon
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.3
    • /
    • pp.201-205
    • /
    • 2009
  • Triglyceride solid lipid with medium chain fatty acid, tricaprin (TC), was used as a core matrix of lipid nanoparticles (LN) to solubilize water-insoluble paclitaxel and enhance the stability of nanoparticles by immobilization of incorporated drug in the solid core during storage at low temperature. In the present study, TC-LN containing paclitaxel was prepared by hot melt homogenization method using TC as a core lipid and phospholipids as stabilizers. The particle size of TC-LN containing paclitaxel was less than 200 nm and its zeta potential was around -40 mV. Calorimetric analysis showed TC core could be solidified by freezing and thawing in the manufacturing process in which the hot dispersion should be prepared at elevated temperature and subsequently cooled to obtain solid lipid nanoparticles. The melting transition of TC core was observed at $27.5^{\circ}C$, which was lower than melting point of TC bulk. The particle size of TC-LN remained unchanged when kept at $4^{\circ}C$. Paclitaxel containing TC-LN showed comparable anticancer activity to the Cremophore ELbased paclitaxel formulation against human ovarian (OVCAR-3) and breast (MCF-7) cancer cell lines. Thus, lipid nanoparticles with medium chain solid lipid may have a potential as alternative delivery system for parenteral administration of paclitaxel.