• Title/Summary/Keyword: hot deformation

Search Result 460, Processing Time 0.021 seconds

Prediction of Microstructural Evolution in Hot Forging of Steel by the Finite Element Method (유한요소법에 의한 열간성형공정에서 강의 미세조직변화 예측)

  • 장용순;고대철;김병민
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.7
    • /
    • pp.129-138
    • /
    • 1998
  • The objective of this study is to demonstrate the ability of a computer simulation of microstructural evolution in hot forging of C-Mn steels. The development of microstructure is strongly dependent on process variables and metallurgical factors that affect time history of thermodynamical variables such as temperature, strain. and strain rate during deformation. Then finite element method is applied for the prediction of microstructural evolution, and it should be coupled with heat transfer analysis to consider the change of thermodynamical properties during forming process. In this study, Yada's recrystallization model and rigid-thermoviscoplastic finite element method are employed in order to analyze microstructural evolution during hot forging process. To show the validity and effectiveness of the proposed method, experiments are accomplished and the results of experiments are compared with those of simulations.

  • PDF

Prediction of Roll Force in Hot Grooveless Rolling of Billet (열간 빌렛의 평롤 압연시 압연하중 예측)

  • Byon, S.M.;Park, H.S.;Jeon, E.C.
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1379-1382
    • /
    • 2007
  • In this paper, we present a simplified analytic approach for the prediction of roll force to be applicable to the grooveless rolling. The approach is based on the deformation shape deduced from physical considerations and employs the assumption that the deformation homogeneously occurs in three directions. Strain and strain rate are calculated by the geometric relationships between those components and the prescribed deformation functions. Then, stress components are obtained from the Levy-Mises' flow rule. By integrating the stress components along the rolling direction, roll force are finally obtained. The prediction accuracy of the proposed model is examined through comparison with results obtained from the finite element analysis.

  • PDF

Deformation Characteristics of Udimet 720Li during Isothermal Forging (Udimet 720Li 합금의 항온단조 변형특성)

  • Yeom J. T.;Na Y. S.;Park N. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.190-193
    • /
    • 2001
  • Hot deformation behavior of Udimet 720Li was characterized by compression tests in the temperature range of $1025^{\circ}C\;to\;1150^{\circ}C$ and the strain rate rage of $0.0005s^{-1}\;to\;5s^{-1}$. In order to characterize the dependence of flow stress on strain, strain rate and temperature, a constitutive equation based on hyperbolic sine formation was used. Isothermal forging of Udimet 720Li was performed in the temperature range $1050-1150^{\circ}C$ at strain rates of $0.05s^{-1}\;and\;0.005s^{-1}$. FE simulation was also carried out to predict deformation microstructures during isothermal forging.

  • PDF

Plastic Deformation Behavior of Al6061 depending on Heat Treatment Condition (연속주조 Al6061 합금의 열처리에 따른 소성변형거동)

  • Park J. H.;Kwon Y. N.;Lee Y. S.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.127-130
    • /
    • 2004
  • In the recent years, lightweight components fabricated with aluminum alloys have been applied into building the automobiles. Among the several competing fabrication methods, hot forging is taken as the most reliable technique to produce suspension parts such as control arms. Generally, Al forging products have been used widely for the aircraft building with the extruded stock as a starting material. For the economical base, however, the cast stocks turn to be as the forging stocks recently after a continuously casting technique was developed to produce quite a uniform microstructure enough to use for the forging process. Even more, there is a tendency to omit the homogenization step before forging, which is considered to be an indispensable process for all kinds of Al alloy, In the present study, a series of compression test was carried out to find out how the cast structure and the following heat treatments influence the deformation behavior, that is, forging characteristic.

  • PDF

High Temperature Deformation Behavior of Beta-gamma TiAl Alloy (Beta-gamma TiAl 합금의 고온변형거동)

  • Kim, J.S.;Kim, Y.W.;Lee, C.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.429-433
    • /
    • 2006
  • High Temperature deformation behavior of newly developed beta-gamma TiAl alloy was investigated in this study. The optimum processing condition was investigated with the aid of Dynamic Materials Model (DMM). Processing maps representing the efficiency of power dissipation for microstructural evolution and instability were constructed utilizing the results of hot compression test at temperatures ranging from $1000^{\circ}C$ to $1200^{\circ}C$ and strain rate ranging from $10^{-4}/s$ to $10^2/s$. The Artificial Neural Network (ANN) simulation was adopted to consider the deformation heating. With the help of processing map and microstructural analysis, the optimum processing condition was presented and the role of $\beta$ phase was also discussed in this study.

  • PDF

디스크 브레이크 저더 개선을 위한 신뢰성 향상 연구

  • Jeong, Won-Seon;Lee, Chang-Su;Song, Hyeon-Seok;Jeong, Do-Hyeon
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2011.06a
    • /
    • pp.99-106
    • /
    • 2011
  • In this study, the analysis technique, which can estimate the temperature rise and thermal deformation of the ventilated disc considering the vehicle information, braking condition and properties of the disc and pad, is developed. The analytical process of the braking power generation during braking is mathematically derived. The thermal energy, which is applied to the surface of a disc as heat flux, is calculated. Then, the temperature rise and thermal deformation of a disc are estimated using FE software, SAMCEF. Shape of the cross section of the disc is optimized according to the response surface analysis method in order to minimize the temperature rise and thermal deformation. The hot judder analysis is done using the optimized disc, and the analysis results are discussed.

  • PDF

Prediction on Flow Stress Curves and Microstructures of 304 Stainless Steel (304 스테인레스강의 고온 유동응력곡선과 미세조직의 예측)

  • 조범호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.171-175
    • /
    • 1999
  • the high temperature deformation behavior of 304 stainless steel was characterized by the hot torsion test. Continuous deformation was carried out at the temperature ranges 900-110$0^{\circ}C$ and the strain rate ranges 5x10-2~5/sec. The formulation of the flow stress curves was developed as subtraction form which was based on dynamic softening mechanisms The volume fraction of dynamic recrystallization and the mean grain size could be expressed as a function of deformation variables temperature (T) strain ($\varepsilon$) strain rate ($\varepsilon$) The calculated values of flow stress and mean grain size could be well matched with experimental values.

  • PDF

High Temperature Deformation Behavior of Rapid-Solidification Processed Al-18Si Alloy (급냉응고된 과공정 Al-Si합금의 고온변형특성에 관한 연구)

  • 김성일
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.183-186
    • /
    • 2000
  • The high temperature deformation behavior of spray-formed Al-19wt%Si-1.87wt%Mg-0.085wt.%Fe alloy was studied by torsion testing in the strain rate range of 0.001-1 sec-1 and in the temperature range of 300-500 $^{\circ}C$. The relationship between stress temperature and strain rate is expressed using the Power law. the behavior of dynamic recrystallization is showed in 300-35$0^{\circ}C$, 1-0.1sec-1 and the behavior of dynamic recovery is showed in 450-50$0^{\circ}C$, 0.01-0.001sec-1 The size of Si particles is mall when the temperature is low and the strain rate is high. The strain rate sensitivity(m) and the apparent activation energy(Q) indicate the dependence on strain rate and temperature for flow stress respectively. The hot ductility is high when m is high and Q is low. The maps of strain rate sensitivity and apparent activation energy suggest the optimum processing conditions.

  • PDF

Recrystallization Behavior of 304 Stainless Steel during Hot Multistage Deformation (304 스테인레스강의 고온다단변형시 재결정 거동)

  • 조상현;김성일;유연철;노광섭
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.77-80
    • /
    • 1997
  • The torsion tests in the range of 900~110$0^{\circ}C$, 5.0$\times$10-2~5.0$\times$100/sec were performed to study the recry stallization behavior of 304 stainless steel in the high temperature multistage deformation. The no-recrystallization temperature(Tnr) and fractional softening(FS) were determined by the change of flow curves. The inflection points of stress slope were moved to lower temperature area as the strain rate and the interrupt time were increased. From the multipass flow curve, the intersection between pass stress and FS curve was corresponding to the pass which the FS dropped abruptly and it was shown that the recrystallization area could be determined by the FS measurement in multipass deformation.

  • PDF

FE-Analysis on void closure behavior during hot open die forging process (주단조품의 기공형태에 따른 기공압착거동에 관한 연구)

  • Lee, Y.S.;Kwon, Y.N.;Lee, J.H.;Lee, S.W.;Kim, N.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.57-60
    • /
    • 2008
  • The studies for internal void closure have been conducted experimentally and numerically for open die forging. The FEM analysis is performed to investigate the deformation behavior of some internal voids in cast ingots during two upsetting stages. The calculated results of void closure behavior are compared with the measured results before and after upsetting. The shapes and sizes of each internal void are scanned by the X-ray scanner. From this result, the criteria for deformation amounts effect on the void closure can be investigated by the types of void. Closed voids could be compressed and eliminated after forging when the applied deformation amounts were larger than the critical effective strains. On the other hand, open voids could not be compressed and removed.

  • PDF