• Title/Summary/Keyword: hot bending process parameters

Search Result 6, Processing Time 0.017 seconds

Characterization of Mechanical Properties of Boron Steel Sheet in Hot Bending Process with Various Parameters

  • Yang, Li;Kang, Chung-Gil
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.375-378
    • /
    • 2009
  • Hot press forming is a new forming process which also names as hot stamping. It can greatly enhance the formability of forming parts. This paper researches the formability of boron steel sheet in hot bending process which is a kind of hot press forming. In the text, the influence of hot press forming processing parameters, such as the heating temperature, blank holding force, punch speed and punch and die radius, on the mechanics properties and microstructure of the hot bending parts was analyzed by tension test and the metallographic observation on the parts with various processing parameters. The relationship between blank holding force and punch load was also presented.

  • PDF

Process Design of the Hot Pipe Bending Process Using High Frequency Induction Heating (고주파 유도가열을 이용한 열간 파이프 벤딩 공정 설계)

  • Ryu, Gyeong-Hui;Lee, Dong-Ju;Kim, Dong-Jin;Kim, Byeong-Min;Kim, Gwang-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.110-121
    • /
    • 2001
  • During hot pipe bending using induction heating, the wall of bending outside is thinned by tensile stress. In design requirement, the reduction of wall thickness is not allowed to exceed 12.5%. So in this study, two methods of bending, one is loading of reverse moment and the other is loading of temperature gradient, have been investigated to design pipe bending process that satisfy design requirements. For this purpose, finite element analysis with a bending radius 2Do(outer diameter of pipe) has been performed to calculate proper reverse moment and temperature gradient to be applied. Induction heating process has been analyzed to estimate influence of heating process parameters on heating characteristic by finite difference method. Then pipe bending experiments have been performed for verification of finite element and finite difference analysis results. Experimental results are in good agreement with the results of simulations.

  • PDF

Evaluation of Design Parameters for Optimizing the Cooling Channel in Hot Press Bending Process (핫 프레스 벤딩 공정에서 냉각회로 최적화를 위한 공정변수의 평가)

  • Nam, Ki-Ju;Choi, Hong-Seok;Ko, Dae-Cheol;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1267-1273
    • /
    • 2009
  • Hot press forming can produce high-strength components by rapidly cooling between closed punch and die after hot forming using quenchable boron steel austenized in a furnace. In the hot press forming process, the cooling rate is influenced by the size, position and arrangement of the cooling channel and the file condition of cooling water in the die. Also, mechanical properties of the final components and operation time are related to cooling rate. Therefore, the design of optimized cooling channel is one of the most important works. In this paper, the effect of position and size of the cooling channel on the cooling rate was investigated by using design of experiment and FE analysis in hot press bending process. Therefore the optimum cooling channel ratio was presented in the HPB.

Thermoelectric Properties of n-type 90%$Bi_{2}Te_{3}+10% Bi_{2}Se_{3}$ Materials Prepared by Rapid Solidification Process and Hot Pressing (급속응고기술에 의한 n-type 90%$Bi_{2}Te_{3}+10% Bi_{2}Se_{3}$ 열간압축제의 열전특성)

  • 김익수
    • Journal of Powder Materials
    • /
    • v.3 no.4
    • /
    • pp.253-259
    • /
    • 1996
  • The efficiency of thermoelectric devices for different applications is known to depend on the thermoelectric effectiveness of the material which tends to grow with the increase of its chemical homogeneity. Thus an important goal for thermal devices is to obtain chemically homogeneous solid solutions. In this work, the new process with rapid solidification (melt spinning method) followed by hot pressing was investigated to produce homogeneous material. Characteristics of the material were examined with HRD, SEM, EPMA-line scan and bending test. Property variations of the materials were investigated as a function of variables, such as dopant ${CdCl}_{2}$ quantity and hot pressing temperature. Quenched ribbons are very brittle and consist of homogeneous $Bi_2Te_3$, ${Bi}_{2}{Se}_{3}$ solid solutions. When the process parameters were optimized, the maximum figure of merit was 2.038$\times$$10^{-3}K^{-4}. The bending strength of the material hot pressed at 50$0^{\circ}C$ was 8.2 kgf/${mm}^2$.

  • PDF

Thermoelectric Properties of p-type 25% $Bi_{2}Te_{3}+75%Sb_{2}Te_{3}$ Materials Prepared by Rapid Solidification Process and Hot Pressing (급속응고기술에 의한 p-type 25% $Bi_{2}Te_{3}+75% Sb_{2}Te_{3}$ 열간압축제의 열전특성)

  • 김익수
    • Journal of Powder Materials
    • /
    • v.3 no.4
    • /
    • pp.246-252
    • /
    • 1996
  • $Bi_{2}Te_{3}-Sb_{2}Te_{3}$, $Bi_{2}Te_{3}-Bi_{2}Se_{3}$ solid solutions are of great interest as materials for thermoelectric energy conversion. One of the key technologies to ensure the efficiency of thermoelectric device is to obtain chemically homogeneous solid solutions. In this work, the new process with rapid solidification followed by hot pressing was investigated to produce homogeneous thermoelectric materials. Characteristics of the materials were examined with XRD, SEM, EPMA-line scan and bending test. Property variations of the materials were investigated as a function of variables, such as excess Te quantity and hot pressing temperature. Quenched ribbons are very brittle and consisted of homogeneous $Bi_{2}Te_{3}$, $Sb_{2}Te_{3}$ solid solutions. When the process parameters were optimized, the maximum figure of merit was 3.073$\times$$10^{-3}K^{-4}$. The bending strength of the material, hot pressed at 45$0^{\circ}C$, was 5.87 kgf/${mm}^2$.

  • PDF

Fabrication of Master Replication by Nanoimprint Lithography (나노 임프린트 리소그라피에 의한 마스터 복제 공정)

  • Jeong, Myung-Yung
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1078-1082
    • /
    • 2003
  • A feasibility study for the fabrication of master replication with nanostructures by Nanoimprint Lithography (NIL) was investigated for application of polymer Photonic Bandgap (PBG) devices used in photonic IC. Large area gratings of $9{\times}15(mm^2)$ with p = 400 nm was successfully embossed on PMMA on silicon wafer and the embossing parameters (temperature, pressure, time) were established. A precise control of $O_2$ plasma Reactive Ion Etching (RIE) process time allowed window opening over the whole area despite the presence of wafer bending. Master replication with aspect ratio 1 was successfully fabricated, but master replication with aspect ratio 3 needs to optimize parameters. All replications were done in a NIL process.

  • PDF