• Title/Summary/Keyword: host manipulation

Search Result 33, Processing Time 0.021 seconds

Mycobacterium abscessus MAB2560 induces maturation of dendritic cells via Toll-like receptor 4 and drives Th1 immune response

  • Lee, Su Jung;Shin, Sung Jae;Lee, Seung Jun;Lee, Moon Hee;Kang, Tae Heung;Noh, Kyung Tae;Shin, Yong Kyoo;Kim, Han Wool;Yun, Cheol-Heui;Jung, In Duk;Park, Yeong-Min
    • BMB Reports
    • /
    • v.47 no.9
    • /
    • pp.512-517
    • /
    • 2014
  • In this study, we showed that Mycobacterium abscessus MAB2560 induces the maturation of dendritic cells (DCs), which are representative antigen-presenting cells (APCs). M. abscessus MAB2560 stimulate the production of pro-inflammatory cytokines [interleukin (IL)-6, tumor necrosis factor (TNF)-${\alpha}$, IL-$1{\beta}$, and IL-12p70] and reduce the endocytic capacity and maturation of DCs. Using $TLR4^{-/-}$ DCs, we found that MAB2560 mediated DC maturation via Toll-like receptor 4 (TLR4). MAB2560 also activated the MAPK signaling pathway, which was essential for DC maturation. Furthermore, MAB2560-treated DCs induced the transformation of $na\ddot{i}ve$ T cells to polarized $CD4^+$ and $CD8^+$ T cells, which would be crucial for Th1 polarization of the immune response. Taken together, our results indicate that MAB2560 could potentially regulate the host immune response to M. abscessus and may have critical implications for the manipulation of DC functions for developing DC-based immunotherapy.

Expression of Recombinant Hybrid Peptide Gaegurin4 and LL37 using Fusion Protein in E. coli (Glutathione S-Transferase에 융합한 재조합 Hybrid Peptide Gaegurin-LL37의 대장균에서의 발현)

  • Bayarbat, Ishvaanjil;Lee, Jae-Hag;Lee, Soon-Youl
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.2
    • /
    • pp.92-97
    • /
    • 2012
  • Antimicrobial peptides (AMPs) are important components of living organisms acting against Gram-negative and Gram-positive bacterial and fungal pathogens. Cathelicidin human peptides have a variety of biological activities that can be used in clinical applications. AMPs are not produced naturally in large quantities, and chemical synthesis is also economically impractical, especially for long peptides. Therefore, as an alternative, heterologous expression of AMPs by recombinant techniques has been studied as a means to reduce production costs. E. coli is an excellent host for the expression of AMPs, as well as other recombinant proteins, because of the low cost involved and its easy manipulation. However, overexpression of AMPs in E. coli has been shown to cause difficulties resulting from the toxicity of the subsequently produced AMPs. Therefore, fusion expression was theorized to be a solution to this problem. In this study, AMPs were expressed as fused proteins with the glutathione S-transferase (GST) binding protein to protect against the toxicity of AMPs when expressed in E. coli. The LL37, and hybrid gaegurin and LL37 (GGN4(1-16)-LL37(17-32), which we designated as GL32, peptides were expressed as GST-fusion proteins in E. coli and the fusion proteins were then purified by affinity columns. The purified peptides were obtained by removal of GST and were confirmed by western blot analysis. The purified antimicrobial peptides then demonstrated antimicrobial activities against Gram-negative and Gram-positive bacterial strains.

Development of New Vector Systems as Genetic Tools Applicable to Mycobacteria (Mycobacteria에 적용 가능한 genetic tool로서의 새로운 vector system 개발)

  • Jeong, Ji-A;Lee, Ha-Na;Ko, In-Jeong;Oh, Jeong-Il
    • Journal of Life Science
    • /
    • v.23 no.2
    • /
    • pp.290-298
    • /
    • 2013
  • The genus Mycobacterium includes crucial animal and human pathogens such as Mycobacterium tuberculosis, Mycobacterium leprae, and Mycobacterium bovis. Although it is important to understand the genetic basis for their virulence and persistence in host, genetic analysis in mycobacteria was hampered by a lack of sufficient genetic tools. Therefore, many functional vectors as molecular genetic tools have been designed for understanding mycobacterial biology, and the application of these tools to mycobacteria has accelerated the study of mechanisms involved in virulence and gene expression. To overcome the pre-existing problems in genetic manipulation of mycobacteria, this paper reports new vector systems as effective genetic tools in Mycobacterium smegmatis. Three vectors were developed; pKOTs is a suicide vector for mutagenesis containing a temperature-sensitive replication origin (TSRO) and the sacB gene encoding levansucrase as a counterselectable marker. pMV306lacZ is an integrative lacZ transcriptional fusion vector that can be inserted into chromosomal DNA by site-specific recombination. pTnMod-OKmTs is a minitransposon vector harboring the TSRO that can be used in random mutagenesis. It was demonstrated in this study that these vectors effectively worked in M. smegmatis. The vector systems reported here are expected to successfully applicable to future research of mycobacterial molecular genetics.