• Title/Summary/Keyword: host gene

Search Result 857, Processing Time 0.033 seconds

북한산 국립공원의 식물상

  • 이영노
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1985.08b
    • /
    • pp.19-22
    • /
    • 1985
  • Magnaporthe grisea (Hebert) Barr (anamorph: Pyricularia grisea) is a typical heterothallic Ascomycete and the causal agent of rice blast, one of the most destructive diseases on rice (Oryza sativa L.) worldwide. The interactions between cells of the pathogen and those of the host involve a complex of biological influences which can lead to blast disease. The early stages of infection process in particular may be viewed as a sequence of discrete and critical events. These include conidial attachment, gemination, and the formation of an appressorium, a dome-shaped and melanized infection structure. Disruption of this process at any point will result in failure of the pathogen to colonize host tissues. This may offer a new avenue for developing innovative crop protection strategies. To recognize and capture such opportunities, understanding the very bases of the pathogenesis at the cellular and molecular level is prerequisite. Much has been learned about environmental cues and endogenous signaling systems for the early infection-related morphogenesis in M. grisea during last several years. The study of signal transduction system in phytopathogenic filamentous fungi offers distinct advantages over traditional mammalian systems. Mammalian systems often contain multiple copies of important genes active in the same tissue under the same physiological processes. Functional redundancy, alternate gene splicing, and specilized isoforms make defining the role of any single gene difficult. Fungi and animals are closely related kingdoms [3], so inferences between these organisms are often justified. For many genes, fungi frequently possess only a single copy, thus phenotype can be attributed directly to the mutation or deletion of any particular gene of interest.

  • PDF

Genome-Wide Analysis of Hypoxia-Responsive Genes in the Rice Blast Fungus

  • Choi, Jaehyuk;Chung, Hyunjung;Lee, Gir-Won;Koh, Sun-Ki;Chae, Suhn-Kee;Lee, Yong-Hwan
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.05a
    • /
    • pp.13-13
    • /
    • 2015
  • Rice blast fungus, Magnaporthe oryzae, is the most destructive pathogen of rice in the world. This fungus has a biotrophic phase early in infection and switches to a necrotrophic lifestyle after host cell death. During the biotrophic phase, the fungus competes with host for nutrients and oxygen. Continuous uptake of oxygen is essential for successful establishment of blast disease of this pathogen. Here, we report transcriptional responses of the fungus to oxygen limitation. Transcriptome analysis using RNA-Seq identified 1,047 up-regulated genes in response to hypoxia. Those genes were involved in mycelial development, sterol biosynthesis, and metal ion transport based on hierarchical GO terms and well-conserved among three different fungal species. In addition, null mutants of three hypoxia-responsive genes were generated and tested for their roles on fungal development and pathogenicity. The mutants for a sterol regulatory element-binding protein gene, MoSRE1, and C4 methyl sterol oxidase gene, ERG25, exhibited increased sensitivity to hypoxia-mimetic agent, increased conidiation, and delayed invasive growth within host cells, suggesting important roles in fungal development. However, such defects did not cause any significant decrease in disease severity. The other null mutant for alcohol dehydrogenase gene, MoADH1, showed no defect in the hypoxia-mimic condition and fungal development. Taken together, this comprehensive transcriptional profiling in response to a hypoxia condition with experimental validations would provide new insights on fungal development and pathogenicity in plant pathogenic fungi.

  • PDF

High-Level Expression and Secretion of Bacillus pumilus Lipase B26 in Bacillus subtilis Chungkookjang

  • Lee, Mi-Hwa;Song, Jae-Jun;Choi, Yoon-Ho;Hong, Seung-Pyo;Rha, Eu-Gene;Kim, Hyung-Kwoun;Lee, Seung-Goo;Poo, Har-Young;Lee, Sang-Chul;Seu, Young-Bae;Sung, Moon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.892-896
    • /
    • 2003
  • High-level expression of the lipase B26 gene from Bacillus pumilus was achieved using Bacillus subtilis Chungkookjang isolated from the Korean traditional fermented bean paste, Chungkookjang. For the secretory production of recombinant lipase B26 in a Bacillus host system, pLipB26 was constructed by ligating the lipase B26 gene into the recently designed Escherichia coli-Bacillus shuttle vector, pLipSM, and that was then transformed into B. subtilis Chungkookjang. Among the various vector, medium, and host combinations, B. subtilis Chungkookjang harboring the pLipB26 exhibited the highest lipase activity in PY medium, and B. subtilis Chungkookjang secreted two times more enzymes than B. subtilis DB 104 under the same condition. When B. subtilis Chungkookjang harboring the pLipB26 was cultured in a 5-1 jar-fermentor containing 21 of a PY medium, the maximum lipase activity (140 U/ml) and production yield (0.68 g/l) were obtained during the late exponential phase from a cell-free culture broth. Although B. subtilis Chungkookjang also secreted extracellular proteases at the late exponential phase, these results suggested the potential of B. subtilis Chungkookjang as a host for the secretory production of foreign proteins.

Cultural Performances of Two Escherichia coli Host- vector Systems for Production of $\beta$-Galactosidase ($\beta$-Galactosidase 생산을 위한 두 대장균 숙주-벡터의 배양 특성)

  • Choi, D.K;Park, Y.H.
    • Microbiology and Biotechnology Letters
    • /
    • v.15 no.6
    • /
    • pp.396-401
    • /
    • 1987
  • Protein productivities of a cloned gene ($\beta$-galactosidase) and the cultural performances of two recombinant Escherichia coli strains, which use different host-vector systems, were studied. E. coli JM109/pTBG10 strain which carries Tac promoter had higher protein productivity than E. coli MH3000 (pRKc1857)/pASI(lacZ) strain which carries pL promoter. Induction of protein syn-thesis was optimum at the initial-and mid-logarithmic growth phases for both strains. Oxygen demand was observed to be very high during the cloned gene expression, and could be alleviated to some extent through pH control. The ratio of specific growth rates of plasmid-harboring to plasmidfree cell, $\mu$+ /$\mu$-, of the high productivity strain was observed to be lower than that of the low productivity one. Plasmid stability was analyzed for 20-30 generations, and it was found that the traction of plasmid-harboring cells dropped to l0% level in about 25 generations for both strains when the cloned gene expression was induced.

  • PDF

In Vitro Transcription Analyses of Autographa californica Nuclear Polyhedrosis Virus Genes

  • Huh, Nam-Eung
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.3
    • /
    • pp.183-190
    • /
    • 1994
  • Cell-free extracts prepared from cultured insect cells, Spodoptera. frugiperda, were analyzed for activation of early gene transcription of an insect baculovirus, Autographa californica nuclear polyhedrosis virus (AcNPV). The template DNA used for in vitro transcription assays contained promoter sites for the baculovirus genes that have been classified as immediate early ($\alpha$) or early genes. These genes are located in the HindIII-K/Q region of the AcNPV genome. Nuclei isolated from the AcNPV-infected Spodoptera frugiperda cells were also used for in vitro transcription analysis by RNase-mapping the labeled RNA synthesized from in vitro run-on reaction in the isolated nuclei. The genes studied by this technique were p26 and pl0 genes which were classified as delayed early and late gene, respectively. We found that transcription of the genes from the HindIII-K region was accurately initiated and unique in the whole cell extract obtained from uninfected cells, although abundance of the in vitro transcripts was reverse to that of in vivo RNA. With isolated nuclei transcription of the p26 gene was inhibited by $\alpha$-amanitin suggesting that the p26 gene was transcribed by host RNA polymerase II. However, transcription of the pl0 gene in isolated nuclei was not inhibited by $\alpha$-amanitin, but rather stimulated by the inhibitor. We also found that the synthesis of $\alpha$-amanitin-resistant RNA polymerase was begun before 6 hr p.i., the time point at which the onset of viral DNA replication as well as the appearance of a-amanitin-resistant viral transcripts were detected. These studies give us strong evidence to support the previous data that early genes of AcNPV were transcribed by host RNA polymerease III, while transcription of late genes was mediated at least by a novel $\alpha$-amanitin-resistant RNA polymerase.

  • PDF

Host-Induced gene silencing of fungal pathogenic genes confer resistance to fungal pathogen, Magnaporthe Oryzae in rice

  • Jin, Byung Jun;Chun, Hyun Jin;Kim, Min Chul
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.134-134
    • /
    • 2017
  • Recently, host-induced gene silencing (HIGS) system has been successfully applied into development of resistant crops against insects, fungal and viral pathogens. To test HIGS-mediated resistance in rice against rice blast fungus, Magnaporthe oryzae, we first tested possibility of movement of small non-coding RNA from rice cells to rice blast fungus. The rice blast fungus expressing GFP transgene were inoculated to transgenic rice plants ectopically expressing dsRNAi construct targeting fungal GFP gene. Expression of dsRNAi construct for GFP gene in transgenic plants significantly suppressed GFP expression in infected fungal cells indicating that small RNAs generated in plant cells can move into infected fungal cells and efficiently suppress the expression of fungal GFP gene. Consistent with these results, expression of dsRNAi constructs against 3 fungal pathogenic genes of M. oryzae in transgenic rice specifically and efficiently suppressed not only the expression of fungal pathogenic genes, but also fungal infection. The conidia of M. oryzae applied on leaf sheath of transgenic rice expressing dsRNAs against 3 fungal pathogenic genes showed abnormal development of primary hyphae and malfunction of appressorium, which is consistent with the phenotypes of corresponding fungal knock-out mutants. Taken these results together, here, we suggest a novel strategy for development of antifungal crops by means of HIGS system.

  • PDF

Evaluation of Mutagenicity with Gamgung-tang Using Host-Mediated Assay (Host-Mediated Assay를 이용한 감궁탕의 돌연변이원성 평가)

  • Shon, Yun-Hee;Kim, Cheorl-Ho;Nam, Kyung-Soo
    • Korean Journal of Pharmacognosy
    • /
    • v.36 no.2 s.141
    • /
    • pp.93-96
    • /
    • 2005
  • Mutagenicity of Gamgung-tang (GGT) was tested using in vitro S-9 mixture in vitro host-mediated assay with Salmonella typhimurium. In the previous reports, GGT was tested for the safety using Ames(-S-9), Bacillus subtilis Rec, and umu gene expression mutagenicity tests. Mutagenic activity in any assays we tested was not found. In this report, we further investigated safety of GGT after metabolic activation in vivo. Ames test with S-9 mixture and host-mediated assay with Salmonella typhimurium TA98 were used to identify metagenic property of GGT. GGT was administered 3 times with i.m. to Balb/c mice did not induced mutagenic effect in Salmonella typhimurium TA98 recovered from the liver after 3.5h with i.p. treatment. Over the entire dose range $(3{\sim}150mg/mouse)$ tested no toxicity was detected to the bacterial cells. These results suggest that there was no DNA damage and mutagenicity by GGT.

Characteristics of Oncolytic Adenovirus Replication and Gene Expression in Hypoxic Condition

  • Kim, Hong-Sung
    • Biomedical Science Letters
    • /
    • v.17 no.3
    • /
    • pp.185-190
    • /
    • 2011
  • Adenovirus type 5 (Ad5) vectors have been used for gene transfer to a wide variety of cell types in vivo and in vitro. The advantages of adenovirus vectors include the high titer of virus readily obtained in large scale preparations, their ability to transduce dividing and non dividing cells, and the high level of transgene expression. Since adenovirus vectors do not integrate in host cell DNA, there is a lack of insertional mutagenesis. However, many human tumor cells lack expression of the adenovirus 5 receptors and contain areas of hypoxia. In order to identify the pattern of replication and gene expression of oncolytic adenovirus in hypoxic condition, multiple different fiber modified Ads (Ad5F/S11, Ad5F/S35, Ad5F/K7, Ad5F/K21, and Ad5F/RGD) was compared. The replication of all fiber modified adenovirus was inhibited in hypoxic condition in HEK 293 cells, but gene expression has variety on different tumor cell lines and the level of coxackievirus and adenovirus receptor (CAR) expression. These data suggest that CAR expression pattern and hypoxic condition of tumor are considered for optimal oncolytic adenovirus application.

A Modified PCR-Directed Gene Replacements Method Using $lambda$-Red Recombination Functions in Escherichia coli

  • KIM SANG-YOON;CHO JAE-YONG
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1346-1352
    • /
    • 2005
  • We have developed a modified gene replacement method using PCR products containing short homologous sequences of 40- to 50-nt. The method required $\lambda$-Red recombination functions provided under the control of a temperature-sensitive CI857 repressor expressed from the $P_{lac}$ promoter in the presence of IPTG on an easily curable helper plasmid. The method promoted the targeted gene replacements in the Escherichia coli chromosome after shifting cultures of the recombinogenic host, which carries the helper plasmid, to $42^{\circ}C$ for 15 min. Since this method employs $\lambda$-Red recombination functions expressed from the easily curable helper plasmid, multiple rounds of gene replacements in the E. coli chromosome would be possible. The procedures described herein are expected to be widely used for metabolic engineering of E. coli and other bacteria.

A plasmid vector faciliting gene expression in both yeast and mammalian cells

  • Lee, Tae-Ho
    • Journal of Microbiology
    • /
    • v.35 no.2
    • /
    • pp.149-151
    • /
    • 1997
  • A plasmid vector with combined features of yeast shuttle vector and mammalian expression vector was constructed to facilitate expression of cloned gene in both cell-types. All necessary elements required for plasmid maintenance and selection in E. coli, yeast and mammalian cells were size-economically arranged in this plasmid. The numan cytomegalovirus (CMV) immediate early promoter and yeast GAL1 promoter were sequentially placed in front of the gene to be expressed. The synthetic splicing donor and acceptor sequences were inserted into the immediate upstream and downstream of the GAL1 promotor, allowing the CMV promotor to direct the expression of a given gene in mammalian cell environment by splicing out the interfering GAL1 promotor sequence. When the resulting vector containing LacZ as a gene was introduced into yeast and mammalian cells, both cells efficiently produced .betha.-galactosidase, dimonstrating its dual host usage.

  • PDF