• Title/Summary/Keyword: host cell death

Search Result 71, Processing Time 0.031 seconds

Signaling Role of NADPH Oxidases in ROS-Dependent Host Cell Death Induced by Pathogenic Entamoeba histolytica

  • Lee, Young Ah;Sim, Seobo;Kim, Kyeong Ah;Shin, Myeong Heon
    • Parasites, Hosts and Diseases
    • /
    • v.60 no.3
    • /
    • pp.155-161
    • /
    • 2022
  • All living organisms are destined to die. Cells, the core of those living creatures, move toward the irresistible direction of death. The question of how to die is critical and is very interesting. There are various types of death in life, including natural death, accidental death, questionable death, suicide, and homicide. The mechanisms and molecules involved in cell death also differ depending on the type of death. The dysenteric amoeba, E. histolytica, designated by the German zoologist Fritz Schaudinn in 1903, has the meaning of tissue lysis; i.e., tissue destroying, in its name. It was initially thought that the amoebae lyse tissue very quickly leading to cell death called necrosis. However, advances in measuring cell death have allowed us to more clearly investigate the various forms of cell death induced by amoeba. Increasing evidence has shown that E. histolytica can cause host cell death through induction of various intracellular signaling pathways. Understanding of the mechanisms and signaling molecules involved in host cell death induced by amoeba can provide new insights on the tissue pathology and parasitism in human amoebiasis. In this review, we emphasized on the signaling role of NADPH oxidases in reactive oxygen species (ROS)-dependent cell death by pathogenic E. histolytica.

Bcl-2 Knockdown Accelerates T Cell Receptor-Triggered Activation-Induced Cell Death in Jurkat T Cells

  • Lee, Yun-Jung;Won, Tae Joon;Hyung, Kyeong Eun;Lee, Mi Ji;Moon, Young-Hye;Lee, Ik Hee;Go, Byung Sung;Hwang, Kwang Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.1
    • /
    • pp.73-78
    • /
    • 2014
  • Cell death and survival are tightly controlled through the highly coordinated activation/inhibition of diverse signal transduction pathways to insure normal development and physiology. Imbalance between cell death and survival often leads to autoimmune diseases and cancer. Death receptors sense extracellular signals to induce caspase-mediated apoptosis. Acting upstream of CED-3 family proteases, such as caspase-3, Bcl-2 prevents apoptosis. Using short hairpin RNAs (shRNAs), we suppressed Bcl-2 expression in Jurkat T cells, and this increased TCR-triggered AICD and enhanced TNFR gene expression. Also, knockdown of Bcl-2 in Jurkat T cells suppressed the gene expression of FLIP, TNF receptor-associated factors 3 (TRAF3) and TRAF4. Furthermore, suppressed Bcl-2 expression increased caspase-3 and diminished nuclear factor kappa B (NF-${\kappa}B$) translocation.

Naegleria fowleri Induces Jurkat T Cell Death via O-deGlcNAcylation

  • Lee, Young Ah;Kim, Kyeong Ah;Shin, Myeong Heon
    • Parasites, Hosts and Diseases
    • /
    • v.59 no.5
    • /
    • pp.501-505
    • /
    • 2021
  • The pathogenic free-living amoeba Naegleria fowleri causes primary amoebic meningoencephalitis, a fatal infection, by penetrating the nasal mucosa and migrating to the brain via the olfactory nerves. N. fowleri can induce host cell death via lytic necrosis. Similar to phosphorylation, O-linked β-N-acetylglucosamine (O-GlcNAc) glycosylation (O-GlcNAcylation) is involved in various cell-signaling processes, including apoptosis and proliferation, with O-GlcNAc addition and removal regulated by O-GlcNAc transferase and O-GlcNAcase (OGA), respectively. However, the detailed mechanism of host cell death induced by N. fowleri is unknown. In this study, we investigated whether N. fowleri can induce the modulation of O-GlcNAcylated proteins during cell death in Jurkat T cells. Co-incubation with live N. fowleri trophozoites increased DNA fragmentation. In addition, incubation with N. fowleri induced a dramatic reduction in O-GlcNAcylated protein levels in 30 min. Moreover, pretreatment of Jurkat T cells with the OGA inhibitor PUGNAc prevented N. fowleri-induced O-deGlcNAcylation and DNA fragmentation. These results suggest that O-deGlcNAcylation is an important signaling process that occurs during Jurkat T cell death induced by N. fowleri.

Characterization of Virulence Function of Pseudomonas cichorii Avirulence Protein E1 (AvrE1) during Host Plant Infection

  • Huong, Duyen Do Tran;Rajalingam, Nagendran;Lee, Yong Hoon
    • The Plant Pathology Journal
    • /
    • v.37 no.5
    • /
    • pp.494-501
    • /
    • 2021
  • Pseudomonas cichorii secretes effectors that suppress defense mechanisms in host plants. However, the function of these effectors, including avirulence protein E1 (AvrE1), in the pathogenicity of P. cichorii, remains unexplored. In this study, to investigate the function of avrE1 in P. cichorii JBC1 (PcJBC1), we created an avrE1-deficient mutant (JBC1ΔavrE1) using CRISPR/Cas9. The disease severity caused by JBC1ΔavrE1 in tomato plants significantly decreased by reducing water soaking during early infection stage, as evidenced by the electrolyte leakage in infected leaves. The disease symptoms caused by JBC1ΔavrE1 in the cabbage midrib were light-brown spots compared to the dark-colored ones caused by PcJBC1, which indicates the role of AvrE1 in cell lysis. The avrE1-deficient mutant failed to elicit cell death in non-host tobacco plants. Disease severity and cell death caused by JBC1ΔavrE1 in host and non-host plants were restored through heterologous complementation with avrE1 from Pseudomonas syringae pv. tomato DC3000 (PstDC3000). Overall, our results indicate that avrE1 contributes to cell death during early infection, which consequently increases disease development in host plants. The roles of PcJBC1 AvrE1 in host cells remain to be elucidated.

Involvement of NOX2-derived ROS in human hepatoma HepG2 cell death induced by Entamoeba histolytica

  • Young Ah Lee ;Myeong Heon Shin
    • Parasites, Hosts and Diseases
    • /
    • v.61 no.4
    • /
    • pp.388-396
    • /
    • 2023
  • Entamoeba histolytica is an enteric tissue-invasive protozoan parasite causing amoebic colitis and liver abscesses in humans. Amoebic contact with host cells activates intracellular signaling pathways that lead to host cell death via generation of caspase-3, calpain, Ca2+ elevation, and reactive oxygen species (ROS). We previously reported that various NADPH oxidases (NOXs) are responsible for ROS-dependent death of various host cells induced by amoeba. In the present study, we investigated the specific NOX isoform involved in ROS-dependent death of hepatocytes induced by amoebas. Co-incubation of hepatoma HepG2 cells with live amoebic trophozoites resulted in remarkably increased DNA fragmentation compared to cells incubated with medium alone. HepG2 cells that adhered to amoebic trophozoites showed strong dichlorodihydrofluorescein diacetate (DCF-DA) fluorescence, suggesting intracellular ROS accumulation within host cells stimulated by amoebic trophozoites. Pretreatment of HepG2 cells with the general NOX inhibitor DPI or NOX2-specific inhibitor GSK 2795039 reduced Entamoeba-induced ROS generation. Similarly, Entamoeba-induced LDH release from HepG2 cells was effectively inhibited by pretreatment with DPI or GSK 2795039. In NOX2-silenced HepG2 cells, Entamoeba-induced LDH release was also significantly inhibited compared with controls. Taken together, the results support an important role of NOX2-derived ROS in hepatocyte death induced by E. histolytica.

Entamoeba histolytica Induces Cell Death of HT29 Colonic Epithelial Cells via NOX1-Derived ROS

  • Kim, Kyeong Ah;Kim, Ju Young;Lee, Young Ah;Min, Arim;Bahk, Young Yil;Shin, Myeong Heon
    • Parasites, Hosts and Diseases
    • /
    • v.51 no.1
    • /
    • pp.61-68
    • /
    • 2013
  • Entamoeba histolytica, which causes amoebic colitis and occasionally liver abscess in humans, is able to induce host cell death. However, signaling mechanisms of colon cell death induced by E. histolytica are not fully elucidated. In this study, we investigated the signaling role of NOX in cell death of HT29 colonic epithelial cells induced by E. histolytica. Incubation of HT29 cells with amoebic trophozoites resulted in DNA fragmentation that is a hallmark of apoptotic cell death. In addition, E. histolytica generate intracellular reactive oxygen species (ROS) in a contact-dependent manner. Inhibition of intracellular ROS level with treatment with DPI, an inhibitor of NADPH oxidases (NOXs), decreased Entamoebainduced ROS generation and cell death in HT29 cells. However, pan-caspase inhibitor did not affect E. histolytica-induced HT29 cell death. In HT29 cells, catalytic subunit NOX1 and regulatory subunit Rac1 for NOX1 activation were highly expressed. We next investigated whether NADPH oxidase 1 (NOX1)-derived ROS is closely associated with HT29 cell death induced by E. histolytica. Suppression of Rac1 by siRNA significantly inhibited Entamoeba-induced cell death. Moreover, knockdown of NOX1 by siRNA, effectively inhibited E. histolytica-triggered DNA fragmentation in HT29 cells. These results suggest that NOX1-derived ROS is required for apoptotic cell death in HT29 colon epithelial cells induced by E. histolytica.

Amoebic PI3K and PKC Is Required for Jurkat T Cell Death Induced by Entamoeba histolytica

  • Lee, Young Ah;Kim, Kyeong Ah;Min, Arim;Shin, Myeong Heon
    • Parasites, Hosts and Diseases
    • /
    • v.52 no.4
    • /
    • pp.355-365
    • /
    • 2014
  • The enteric protozoan parasite Entamoeba histolytica is the causative agent of human amebiasis. During infection, adherence of E. histolytica through Gal/GalNAc lectin on the surface of the amoeba can induce caspase-3-dependent or -independent host cell death. Phosphorylinositol 3-kinase (PI3K) and protein kinase C (PKC) in E. histolytica play an important function in the adhesion, killing, or phagocytosis of target cells. In this study, we examined the role of amoebic PI3K and PKC in amoeba-induced apoptotic cell death in Jurkat T cells. When Jurkat T cells were incubated with E. histolytica trophozoites, phosphatidylserine (PS) externalization and DNA fragmentation in Jurkat cells were markedly increased compared to those of cells incubated with medium alone. However, when amoebae were pretreated with a PI3K inhibitor, wortmannin before being incubated with E. histolytica, E. histolytica-induced PS externalization and DNA fragmentation in Jurkat cells were significantly reduced compared to results for amoebae pretreated with DMSO. In addition, pretreatment of amoebae with a PKC inhibitor, staurosporine strongly inhibited Jurkat T cell death. However, E. histolytica-induced cleavage of caspase-3, -6, and -7 were not inhibited by pretreatment of amoebae with wortmannin or staurosporin. In addition, we found that amoebic PI3K and PKC have an important role on amoeba adhesion to host compartment. These results suggest that amebic PI3K and PKC activation may play an important role in caspase-independent cell death in Entamoeba-induced apoptosis.

The Hypersensitive Response. A Cell Death during Disease Resistance

  • Park, Jeong-Mee
    • The Plant Pathology Journal
    • /
    • v.21 no.2
    • /
    • pp.99-101
    • /
    • 2005
  • Host cell death occurs during many, but not all, interactions between plants and the pathogens that infect them. This cell death can be associated with disease resistance or susceptibility, depending on the nature of the pathogen. The most well-known cell death response in plants is the hypersensitive response (HR) associated with a resistance response. HR is commonly regulated by direct or indirect interactions between avirulence proteins from pathogen and resistance proteins from plant and it can be the result of multiple signaling pathways. Ion fluxes and the generation of reactive oxygen species commonly precede cell death, but a direct involvement of the latter seems to vary with the plant-pathogen combination. Exciting advances have been made in the identification of cellular protective components and cell death suppressors that might operate in HR. In this review, recent progress in the mechanisms by which plant programmed cell death (PCD) occurs during disease resistance will be discussed.

Proliferation of Toxoplasma gondii Suppresses Host Cell Autophagy

  • Lee, Youn-Jin;Song, Hyun-Ouk;Lee, Young-Ha;Ryu, Jae-Sook;Ahn, Myoung-Hee
    • Parasites, Hosts and Diseases
    • /
    • v.51 no.3
    • /
    • pp.279-287
    • /
    • 2013
  • Autophagy is a process of cytoplasmic degradation of endogenous proteins and organelles. Although its primary role is protective, it can also contribute to cell death. Recently, autophagy was found to play a role in the activation of host defense against intracellular pathogens. The aims of our study was to investigate whether host cell autophagy influences Toxoplasma gondii proliferation and whether autophagy inhibitors modulate cell survival. HeLa cells were infected with T. gondii with and without rapamycin treatment to induce autophagy. Lactate dehydrogenase assays showed that cell death was extensive at 36-48 hr after infection in cells treated with T. gondii with or without rapamycin. The autophagic markers, LC3 II and Beclin 1, were strongly expressed at 18-24 hr after exposure as shown by Western blotting and RT-PCR. However, the subsequent T. gondii proliferation suppressed autophagy at 36 hr post-infection. Pre-treatment with the autophagy inhibitor, 3-methyladenine (3-MA), down-regulated LC3 II and Beclin 1. The latter was also down-regulated by calpeptin, a calpain inhibitor. Monodansyl cadaverine (MDC) staining detected numerous autophagic vacuoles (AVs) at 18 hr post-infection. Ultrastructural observations showed T. gondii proliferation in parasitophorous vacuoles (PVs) coinciding with a decline in the numbers of AVs by 18 hr. FACS analysis failed to confirm the presence of cell apoptosis after exposure to T. gondii and rapamycin. We concluded that T. gondii proliferation may inhibit host cell autophagy and has an impact on cell survival.

Chracterization of THP-1 Cell Death Induced by Porphyromonas gingivalis Infection

  • Song, YuRi;Kim, SeYeon;Park, Mee Hee;Na, Hee Sam;Chung, Jin
    • International Journal of Oral Biology
    • /
    • v.42 no.1
    • /
    • pp.17-23
    • /
    • 2017
  • Background: Periodontitis is generally a chronic disorder characterized by the breakdown of tooth-supporting tissues. P. gingivalis, a Gram-negative anaerobic rod, is one of the major pathogens associated with periodontitis. Frequently, P. gingivalis infection leads to cell death. However, the correlation between P. gingivalis-induced cell death and periodontal inflammation remains to be elucidated. Among cell deaths, the death of immune cells appears to play a significant role in inflammatory response. Thus, the aim of this study was to examine P. gingivalis-induced cell death, focusing on autophagy and apoptosis in THP-1 cells. Methods: Human acute monocytic leukemia cell line (THP-1) was used for all experiments. Autophagy induced by P. gingivalis in THP-1 cells was examined by Cyto ID staining. Intracellular autophagic vacuoles were observed by fluorescence microscopy using staining Acridine orange (AO); and 3-methyladenine (3-MA) was used to inhibit autophagy. Total cell death was measured by LDH assay. Cytokine production was measured by an ELISA method. Results: P. gingivalis induced autophagy in an MOI-dependent manner in THP-1 cells, but 3-MA treatment decreased autophagy and increased the apoptotic blebs. P. gingivalis infection did not increase apoptosis compared to the control cells, whereas inhibition of autophagy by 3-MA significantly increased apoptosis in P. gingivalis-infected THP-1 cells. Inhibition of autophagy by 3-MA also increased total cell deaths and inflammatory cytokine production, including $IL-1{\beta}$ and $TNF-{\alpha}$. Conclusion: P. gingivalis induced autophagy in THP-1 cells, but the inhibition of autophagy by 3-MA stimulated apoptosis, leading to increased cell deaths and pro-inflammatory cytokines production. Hence, the modulation of cell deaths may provide a mechanism to fight against invading microorganisms in host cells and could be a promising way to control inflammation.