• Title/Summary/Keyword: horseradish peroxidase

Search Result 140, Processing Time 0.025 seconds

Oxidative Coupling Reaction of Purified Aldrich Humic Acid by Horseradish Peroxidase (산화환원효소에 의한 휴믹산의 산화중합반응)

  • Jee, Sang-Hyun;Kim, Do-Gun;Kim, Jeong-Hyun;Ko, Seok-Oh
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.11
    • /
    • pp.1054-1062
    • /
    • 2010
  • Oxidative coupling reactions of humic substances (HS) can be catalyzed by a variety of natural extracellular enzymes and metal oxides. In this study, property changes of HS induced by a natural enzyme, horseradish peroxidase (HRP), and the effect of it to microfiltration (MF) were investigated. PAHA was transformed by oxidative coupling reaction with HRP and hydrogen peroxide ($H_2O_2$), verifying the catalytic effects of the HRP. Size exclusion chromatography (SEC) revealed that weight-average molecular weight (MWw) of PAHA was proportionally increased with the dosages of HRP and $H_2O_2$, indicating the transform action of HS into larger and complex molecules. An increase in the conformational stability of HS was achieved through the promotion of intermolecular covalent bondings between heterogeneous humic molecules. Spectroscopic analysis (fluorescence and infrared spectroscopy) proved that functional groups were transformed by the reaction. Additionally, HS and transformed products were undergone microfiltration (MF) to examine the treatment potential of them in a water treatment facility. Original HS could not be removed by MF but larger molecules of transformed products could be removed. Meanwhile, transformed products caused more fouling on the filtration than original HS. This results proved that natural organic matter (NOM) can be removed by MF after its increase in molecular size by oxidative coupling reaction.

Study on Dehydrogenative Polymerization of Monolignols by Peroxidase/H2O2 (Peroxidase/H2O2 조건에서 리그닌 전구물질에 따른 탈수소 중합반응 특성 연구)

  • Moon, Sun-Joo;Kim, Kwang-Ho;Eom, In-Yong;Lee, Soo-Min;Kim, Yong-Hwan;Choi, Joon-Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.223-229
    • /
    • 2010
  • In this study diverse dehydrogenative polymers (DHPs) were synthesized with three precursors of native lignin [p-coumaryl alcohol (PCA), coniferyl alcohol (CA), sinapyl alcohol (SA)] in the presence of horseradish peroxidase (HRP, EC. 1.11.1.7)/$H_2O_2$. To compare the structural features between DHPs and native lignin, the DHPs as well as pine/poplar milled wood lignins were simultaneously subjected to gel permeation chromatography (GPC) to determine average molecular weights and derivatization followed by reductive cleavage (DFRC) to investigate the frequency of ${\beta}$-O-4 linkage. The highest yield of DHP was measured to 71% when CA was solely injected (G-DHP) and the yield of H-DHP was 42%. However, single injection of SA could not form any polymer in this system. The average molecular weights of DHPs were ranged between 3,000~4,700, which were only 1/2 fold compared with that of pine MWL (G-type lignin: Mw 7,340) and 1/3 scale compared with that of poplar MWL (GS-type lignin: Mw 13,250). DFRC analysis revealed that the formation of ${\beta}$-O-4 linkage during dehydrogenative polymerization was the highest in the GS-DHP with ca. 502 ${\mu}mol$/g, which was, however, remained to only 50% compared to that in poplar MWL (1107 ${\mu}mol$/g). The ${\beta}$-O-4 linkage was estimated to ca. 286 ${\mu}mol$/g In the G-DHP, which was twice as much as that of H-DHP(127 ${\mu}mol$/g). Similar to GS-DHP, only half amount of ${\beta}$-O-4 linkage, compared to pine MWL, was formed during in vitro polymerization of CA by horseradish peroxidase/$H_2O_2$.

Polymerization of aniline using a peroxidase-mimetic catalyst

  • Kim, Min-Chul;Lim, Youngjoon;Lee, Sang-Yup
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.364-371
    • /
    • 2018
  • Enzyme polymerization is a benign process exploiting the unique activity of enzymes. In this study, a peroxidase-mimetic catalyst is demonstrated as an alternative to horseradish peroxidase (HRP) for the polymerization of aniline. The mimetic catalyst successfully catalyzes the polymerization of aniline monomers to produce polyaniline (PANI) in an aqueous solution. The PANI produced is rich of para-structure that is generally observed when HRP is used as a catalyst. Compared to HRP, the peroxidase-mimetic catalyst shows a considerably higher catalytic activity at neutral and weak basic conditions (pH >6.5) and at temperatures over $45^{\circ}C$, at which HRP is denatured.

Peroxidase-mediated Formation of the Fungal Polyphenol 3,14'-Bihispidinyl

  • Lee, In-Kyoung;Yun, Bong-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.107-109
    • /
    • 2008
  • Medicinal fungi, Phellinus linteus and Inonotus xeranticus, produce a cluster of yellow pigment in their fermentation broth that acts as an important element of biological activity. The pigment is composed of diverse polyphenols with a styrylpyrone moiety, mainly hispidin and its dimers, 3,14'-bihispidinyl, hypholomine B, and 1,1-distyrylpyrylethan. Although dimeric hispidins were proposed to be biosynthesized from two molecules of monomer via oxidative coupling by ligninolytic enzymes, laccase and peroxidase, the details of this process remain unknown. In this preliminary study, we attempted to achieve enzymatic synthesis of the hispidin dimer from hispidin by using commercially available horseradish peroxidase (HRP). Consequently, a hispidin dimer, 3,14'-bihispidinyl, was synthesized, whereas the other dimers, hypholomine B and 1,1-distyrylpyrylethan, were not produced. This result suggested that the oxidative coupling at the C-3 and C-14' positions of hispidins was dominant in the process of dimerization by HRP, and indicated that additional catalysts or substrates would be needed to synthesize other hispidin dimers present in the fungal metabolite.

Development of Membrane Strip Assay System for Lipoprotein Cholesterol (Membrane strip을 이용한 지질단백질 Cholesterol 측정시스템의 개발)

  • 신인수;백세환
    • KSBB Journal
    • /
    • v.11 no.2
    • /
    • pp.140-150
    • /
    • 1996
  • To develop a home-version assay system for plasma lipoprotein cholesterol, variables that can control the assay performance were optimized. The system was constructcd by using two major components: nitrocellulose membrane strip with immobilized enzymes (cholesterol esterase, cholesterol oxidase, and horseradish peroxidase); and sample carrier solution containing non-ionic detergent (Triton X-100) and chromogen (3,3'-diaminobenzidine). Once a sample combined with the carrier was absorbed from the bottom of the strip, cholesterol was delivered by capillary action to the immobilized enzymes and a sequential reactions took place. In the final reaction, the chromogen was oxidized and then generated a color as signal that was proportional to the concentration of cholesterol. The signal intensity was enhanced by optimizing conditions for the immobilization of enzymes and the chemical composition of carriel. Under these conditions, a dose-response curve was obtained and revealed a high sensitivity enough to measure the cholesterol in blood.

  • PDF

Development and Evaluation of a Competitive Enzyme Immunoassay for the Detection of Antibodies to Treponema pallidum (경쟁적 효소면역 측정법을 이용한 Treponema pallidum 항체 진단시약의 개발 및 평가)

  • 김병문;이정환;정문섭;김승철;이미용;이성희;김원배
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.4
    • /
    • pp.344-348
    • /
    • 1999
  • A competitive enzyme-linked immunosorbent assay(ELISA) for the detection of antibodies to Treponema pallidum(T.pallidum) was developed and evaluated. T.apllidum lysate was immobilized on the surface of microplate wells and horseradish peroxidase labeled human anti-T.pallidum lysate was immobilized on the surface of microplate wells and horseradish peroxidase labeled human anti-T.pallidum was prepared and used as a tracer. The performance of the competitive ELISA was evaluated by using different specimens. The competitive ELISA showed a sensitivity of 100% in a performance panel consisting of serum and plasma with anti-T.pallidum reactivity ranging from negative to strong positive by FTA-ABS test system and 120 plasma samples positive by TPHA. The specificity of the competitive ELISA was 100% in 1,200 plasma samples collected from healthy seronegative blood donors. These results suggest that the competitive ELISA provides an excellent assay method for the detection of antibodies to T.pallidum, and may be particularly useful for serological blood screening of syphilis.

  • PDF

Glucose Determination by Using Korean Radish Anionic Peroxidase (한국산 무 (Raphanus sativus L.) anionic peroxidase를 이용한 당 정량법 연구)

  • Kim, Jae-Hong;Kim, Sung-Ho;Lee, Mi-Young
    • Applied Biological Chemistry
    • /
    • v.43 no.2
    • /
    • pp.100-105
    • /
    • 2000
  • Anionic peroxidases (POD) were isolated from Korean radish (Raphanus sativus L.) root by using fractionation with $(NH_4)_2SO_4$ and CM-cellulose ion exchange chromatography and used as the colorimetric enzyme for glucose determination. The chromogen used in this work was o-tolidine or 4-aminoantipyrine/diethylaniline (4AA/DEA) and the colored products were measured at 630 nm. Korean radish anionic POD showed much better colorimetric reaction of glucose determination with 4AA/DEA than with o-tolidine. The r values of calibration curve for glucose determination by o-tolidine and 4AA/DEA were 0.9983 and 0.9963, respectively. In order to compare the reactivity for substrate oxidation by Korean radish POD and horseradish POD, the Km values against o-dianisidine and guaiacol were measured. Korean radish POD had about 40 fold higher affinity for o-dianisidine and 2 fold higher affinity for guaiacol as revealed by Km values. These results showed that Korean radish POD could be developed as the colorimetric diagnosis reagent for glucose determination with high sensitivity.

  • PDF

Enzymatic Synthesis of Flame Retardant Phenolic Polymers Catalyzed by Horseradish Peroxidase (Horseradish Peroxidase 효소촉매에 의한 난연성 페놀고분자의 합성)

  • Park, Han Sol;Park, Jung Hee;Lee, Hak Sung;Ryu, Keungarp
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.111-115
    • /
    • 2013
  • The optimum synthetic conditions of poly(p-phenylphenol) by horseradish peroxidase in dioxane:water (80:20 v/v) mixtures were studied. The stability against thermal degradation and structural properties of the synthesized phenolic resins were investigated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), respectively. The synthetic yield of poly(p-phenylphenol) increased upon the increase of the amount of enzyme up to 0.25 mg HRP/mL, then leveled off for further increase of the enzyme usage. When sodium acetate (100 mM, pH 4~6) and sodium phosphate (100 mM, pH 7~9) were used as the buffering salts for the aqueous component (20% v/v), the synthetic yield of the resin increased at higher pH of the aqueous buffer. But when the pHs of the aqueous buffer were 6 and 9, the synthetic yield strongly depended on the types of the buffering salts; if sodium phosphate was used instead of sodium acetate at pH 6, the yield decreased by about 15% and if sodium bicarbonate was used instead of sodium phosphate, the yield decreased by almost 20%. When the pH range of the aqueous buffer was from 4 to 7, the addition of a radical mediator, 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonate) (ABTS), up to 2 mM improved the synthetic yield of the resin by about 10%. TGA experiments revealed that the thermal stability of the resin synthesized in dioxane:water (100 mM sodium phosphate, pH 9) (80:20 v/v) was high having the char yield of 47% upon the heating at $800^{\circ}C$. DCS results showed that the structures of the polymers synthesized in acidic aqueous buffers were different from those of the polymers synthesized in the basic aqueous buffers. However, all the synthesized resins were found to have the property of the thermosetting resins.

Effects of Hydrogen Peroxide Concentration on the Polymerization of p-Phenylphenol in Organic Solvent by Peroxidase

  • Yoo, Young-Je;Yeo, Joo-Sang;Park, Tae-In
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.3
    • /
    • pp.177-180
    • /
    • 1995
  • In horseradish peroxidase-catalyzing polymerization of phenol under the water/dioxane solvent system, the optimal concentration of hydrogen peroxide was found to be 10 mmol/I. Feeding of hydrogen peroxide at its optimal concentration improved the polymerization performance by reducing reaction time and increasing molecular weights. Monomer conversions and the molecular weights of the enzymatically produced polymer were in the ranges of 83.1~94.2$%$ and 58000~68000, respectively.

  • PDF