• Title/Summary/Keyword: horizontal stability

Search Result 649, Processing Time 0.02 seconds

EFFECTS OF SUPPORT STRUCTURE CHANGES ON FLOW-INDUCED VIBRATION CHARACTERISTICS OF STEAM GENERATOR TUBES

  • Ryu, Ki-Wahn;Park, Chi-Yong;Rhee, Hui-Nam
    • Nuclear Engineering and Technology
    • /
    • v.42 no.1
    • /
    • pp.97-108
    • /
    • 2010
  • Fluid-elastic instability and turbulence-induced vibration of steam generator U-tubes of a nuclear power plant are studied numerically to investigate the effect of design changes of support structures in the upper region of the tubes. Two steam generator models, Model A and Model B, are considered in this study. The main design features of both models are identical except for the conditions of vertical and horizontal support bars. The location and number of vertical and horizontal support bars at the middle of the U-bend region in Model A differs from that of Model B. The stability ratio and the amplitude of turbulence-induced vibration are calculated by a computer program based on the ASME code. The mode shape with a large modal displacement at the upper region of the U-tube is the key parameter related to the fretting wear between the tube and its support structures, such as vertical, horizontal, and diagonal support bars. Therefore, the location and the number of vertical and horizontal support bars have a great influence on the fretting wear mechanism. The variation in the stability ratios for each vibrational mode is compared with respect to Model A and Model B. Even though both models satisfy the design criteria, Model A shows substantial improvements over Model B, particularly in terms of having greater amplitude margins in the turbulence-excited vibration (especially at the inner region of the tube bundle) and better stability ratios for the fluid-elastic instability.

Characteristics of Lateral Flow due to Embankments for Road Construction on Soft Grounds Using Vertical Drain Methods (연직배수공법이 적용된 연약지반 상에 도로성토로 인한 측방유동의 특성)

  • Hong, Won-Pyo;Kim, Jung-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.9
    • /
    • pp.5-15
    • /
    • 2012
  • Field monitoring data for embankments in thirteen road construction sites at coastal area of the Korean Peninsula were analyzed to investigate the characteristics of lateral flow in soft grounds, to which vertical drain methods were applied. First of all, the effect of the embankment scale on the lateral flow was investigated. Thicker soft soils and lager relative embankment scale produced more horizontal displacements in soft grounds. Especially, if thick soft grounds were placed, the relative embankment scale, which was given by the ratio of thickness of soft ground to the bottom width of embankments, became larger and in turn large horizontal displacement was produced. And also higher filling velocity of embankments induced more horizontal displacements in soft grounds. The other major factors affecting the lateral flow in soft ground were the thickness and undrained shear strength of soft grounds, the soil modulus and the stability number. Maximum horizontal displacement was induced by less undrained shear strength and soil modulus of soft grounds. Also more stability numbers produced more maximum horizontal displacements. When the shear deformation does not develop, the stability number was less than 3.0 and the safety factor of bearing was more than 1.7. However, if the stability number was more than 5.14 and the safety factor of bearing was less than 1.0, the unstable shear failure developed in soft ground. 50mm can be recommended as a criterion of the allowable maximum horizontal displacement to prevent the shear deformation in soft ground, while 100mm can be recommended as a criterion of the allowable maximum horizontal displacement to prevent the shear failure in soft ground.

The expanded LE Morgenstern-Price method for slope stability analysis based on a force-displacement coupled mode

  • Deng, Dong-ping;Lu, Kuan;Wen, Sha-sha;Li, Liang
    • Geomechanics and Engineering
    • /
    • v.23 no.4
    • /
    • pp.313-325
    • /
    • 2020
  • Slope displacement and factor of safety (FOS) of a slope are two aspects that reflect the stability of a slope. However, the traditional limit equilibrium (LE) methods only give the result of the slope FOS and cannot be used to solve for the slope displacement. Therefore, developing a LE method to obtain the results of the slope FOS and slope displacement has significance for engineering applications. Based on a force-displacement coupled mode, this work expands the LE Morgenstern-Price (M-P) method. Except for the mechanical equilibrium conditions of a sliding body adopted in the traditional M-P method, the present method introduces a nonlinear model of the shear stress and shear displacement. Moreover, the energy equation satisfied by a sliding body under a small slope displacement is also applied. Therefore, the double solutions of the slope FOS and horizontal slope displacement are established. Furthermore, the flow chart for the expanded LE M-P method is given. By comparisons and analyses of slope examples, the present method has close results with previous research and numerical simulation methods, thus verifying the feasibility of the present method. Thereafter, from the parametric analysis, the following conclusions are obtained: (1) the shear displacement parameters of the soil affect the horizontal slope displacement but have little effect on the slope FOS; and (2) the curves of the horizontal slope displacement vs. the minimum slope FOS could be fitted by a hyperbolic model, which would be beneficial to obtain the horizontal slope displacement for the slope in the critical state.

Horizontal instability after acromioclavicular joint reduction using the two-hole technique is preferred over the loop technique: a single-blind randomized clinical trial

  • Mardani-Kivi, Mohsen;Asadi, Kamran;Leili, Ehsan Kazemnejad;Hashemi-Motlagh, Keyvan;Izadi, Amin;Pishgahpour, Mona;Darabipour, Zohre
    • Clinics in Shoulder and Elbow
    • /
    • v.25 no.3
    • /
    • pp.224-229
    • /
    • 2022
  • Background: Most acromioclavicular joint (ACJ) injuries are caused by direct trauma to the shoulders, and various methods and techniques are used to treat them; however, none of the options can be considered the gold standard. This study examines the horizontal stability of the ACJ after a complete dislocation was repaired using one of two Ethibond suture techniques, the loop technique and the two holes in the clavicle technique. Methods: In this single-blind, randomized clinical trial, 104 patients diagnosed with complete ACJ dislocation type V were treated using Ethibond sutures with either the loop technique or the two holes in the clavicle technique. Horizontal changes in the ACJ were radiographically assessed in the lateral axial view, and shoulder function was evaluated by the Constant (CS) and Taft (TS) scores at intervals of 3, 6, and 12 months after surgery. Results: The horizontal stability of the ACJ was better with the two-hole technique than the loop technique at all measurement times. CS and TS changes showed a significant upward trend over time with both techniques. The mean CS and TS at the final visit were 95.2 and 11.6 with the loop technique and 94.0 and 11.9 with the two-hole technique, respectively. The incidence of superficial infections caused by the subcutaneous pins was the same in the two groups. Conclusions: Due to the improved ACJ stability with the two-hole technique, it appears to be a more suitable option than the loop technique for AC joint reduction.

Reliability analysis of external and internal stability of reinforced soil under static and seismic loads

  • Ahmadi, Rebin;Jahromi, Saeed Ghaffarpour;Shabakhty, Naser
    • Geomechanics and Engineering
    • /
    • v.29 no.6
    • /
    • pp.599-614
    • /
    • 2022
  • In this study, the reliability analysis of internal and external stabilities of Reinforced Soil Walls (RSWs) under static and seismic loads are investigated so that it can help the geotechnical engineers to perform the design more realistically. The effect of various variables such as angle of internal soil friction, soil specific gravity, tensile strength of the reinforcements, base friction, surcharge load and finally horizontal earthquake acceleration are examined assuming the variables uncertainties. Also, the correlation coefficient impact between variables, sensitivity analysis, mean change, coefficient of variation and type of probability distribution function were evaluated. In this research, external stability (sliding, overturning and bearing capacity) and internal stability (tensile rupture and pull out) in both static and seismic conditions were investigated. Results of this study indicated sliding as the predominant failure mode in the external stability and reinforcing rupture in the internal stability. First-Order Reliability Method (FORM) are applied to estimate the reliability index (or failure probability) and results are validated using the Monte Carlo Simulation (MCS) method. The results showed among all variables, the internal friction angle and horizontal earthquake acceleration have dominant impact on the both reinforced soil wall internal and external stabilities limit states. Also, the type of probability distribution function affects the reliability index significantly and coefficient of variation of internal friction angle has the greatest influence in the static and seismic limits states compared to the other variables.

Analytical solution of seismic stability against overturning for a rock slope with water-filled tension crack

  • Zhang, Yanjun;Nian, Tingkai;Zheng, Defeng;Zheng, Lu
    • Geomechanics and Engineering
    • /
    • v.11 no.4
    • /
    • pp.457-469
    • /
    • 2016
  • Steep rock slope with water-filled tension crack will happen to overturn around the toe of the slope under seismic loading. This failure type is completely different from the common toppling failure occurring in anti-dipping layered rock mass slopes with steeply dipping discontinuities. This paper presents an analytical approach to determine the seismic factor of safety against overturning for an intact rock mass slope with water-filled tension crack considering horizontal and vertical seismic coefficients. This solution is a generalized explicit expression and is derived using the moment equilibrium approach. A numerical program based on discontinuous deformation analysis (DDA) is adopted to validate the analytical results. The parametric study is carried out to adequately investigate the effect of horizontal and vertical seismic coefficients on the overall stability against overturning for a saturated rock slope under two water pressure modes. The analytical results show that vertically upward seismic inertia force or/and second water pressure distribution mode will remarkably decrease the slope stability against overturning. Finally, several representative design charts of slopes also are presented for the practical application.

Stability of A Surcharged Tunnel under the Effect of Pre-Loading on the Adjacent Braced Wall (근접한 흙막이벽체에 가하는 선행하중의 영향을 받는 상재하중 재하 터널의 안정)

  • Kim, IL;Lee, Sang Duk
    • Journal of the Society of Disaster Information
    • /
    • v.4 no.2
    • /
    • pp.10-27
    • /
    • 2008
  • When the ground is excavated adjacent to the existing tunnel, which is loaded by the surcharge on the ground surface, the tunnel stability would be very sensitive to the deformation of the ground induced by the horizontal displacement of braced wall. The stability of the existing surcharged tunnel could be controlled by pre-loading on the braced wall. In this paper, it was investigated, if it would be possible to keep the existing surcharged tunnel stable by preventing the horizontal displacement of a braced wall by imposing the pre-loading during the ground excavation. For this purpose, large scale model tests were performed in a scale 1/10 at the test pit which was 2.0m in width and 6.0m in height and 4.0m in length. Isotropic test ground was constructed homogeneously by wet sand. Model tunnel was constructed in the test ground. Surcharge was loaded on the ground surface above the tunnel. During the tests, the behavior of model tunnel and model braced wall was measured. Numerical analyses were also performed in the same condition as the tests. And their results were compared to that of the model tests. Consequently, the effect of a surcharge could be compensated by imposing the pre-loading on the braced wall. The existing tunnel and the braced wall could be kept stable by preventing the horizontal displacement of the braced wall through pre-loading, although the tunnel is surcharged.

  • PDF

A CASE STUDY OF FEM ANALYSIS ON GROUND REINFORCEMENT USING HORIZONTAL JET GROUT ROOFING IN SOFT GROUND TUNNELING (연약 지층 터널의 보강공법에 관한 FEM 해석 사례연구)

  • 김주봉;문상조
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1993.10a
    • /
    • pp.51-56
    • /
    • 1993
  • This paper presents the FEM anlysis results performed to assess the applicability of Horizontal Jet Grout Roofing, and of ground improvement methods for tunneling in soft ground. Horizontal Jet Grount Roofing Method is applicable to ensure the stability of tunnel face in non-cemeted alluvial strata under high ground water pressure. For applying this method, to ensure the reliability, the Horizontel Jet Grout Roofing should be double lined with pre-grouting to reduce the water inflow during the jet grouting.

  • PDF

A Mobile Measurement Technique of Picture Quality Impairing Factor In Mobile Television Reception under Multipath Propagation Environments (다중경로 전파환경에서 텔레비전 이동수신시의 화상품질 열화요인 이동측정법)

  • Deock Ho Ha
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.8
    • /
    • pp.27-33
    • /
    • 1993
  • This paper presents a mobile measurement technique of the ghost-flutter caused in mobile television reception. The ghost-flutter is caused by timing variation of the television horizontal synchronizing pulse due to frequency selective fading in a multipath propagation environment. The ghost-flutter can be detected by measuring the dynamic timing variation of horizontal synchronizing pulse. Especially, in this paper, a technique for measuring horizontal synchronizing timing fluctuations which cause the ghost-flutter is developed, using a Rubidium oscillator as a time standard with high stability.

  • PDF