• Title/Summary/Keyword: horizontal size

Search Result 756, Processing Time 0.025 seconds

Current Research Trend of Postharvest Technology for Chrysanthemum (국화 수확 후 관리기술의 최근 연구 동향)

  • Kim, Su-Jeong;Lee, Seung-Koo;Kim, Ki-Sun
    • Korean Journal of Plant Resources
    • /
    • v.25 no.1
    • /
    • pp.156-168
    • /
    • 2012
  • Chrysanthemum is a cut flower species that normally lasts for 1 to 2 weeks, in some cases 3-4 weeks. This has been attributed to low ethylene production during senescence. Reduction in cut flower quality has been attributed to the formation of air embolisms that partially or completely blocks the water transport from the vase solution to the rest of the cut flower stem, increasing hydraulic resistance which may cause severe water stress, yellowing, wilting of leaf, and chlorophyll degradation. Standard type chrysanthemum can be harvested when buds were still tightly closed and then fully opened with the simple bud-opening solution. Standard type chrysanthemum can also be harvested when the minimum size of the inflorescence is about 5-6 cm bud which opened into the first flower full-sized flower. While spray varieties can be harvested when 2-4 most mature flowers have opened (40% opening). Cut flowers are sorted by stem length, weight, condition, and so on. Standard chrysanthemum is 80 cm length for standard type and 70cm for spray type. Pre-treatment with a STS, plant regulator such as GA, BA, 1-MCP, chrysal, germicide, and sucrose, significantly improved the vase life and quality of cut flowers. It is well established that vase solutions containing sugar can improve the vase life of cut chrysanthemum. Chrysanthemum is normally packed in standard horizontal fiberboard boxes. Chrysanthemum should normally be stored at $5{\sim}7^{\circ}C$. Precooling resulted in reduction in respiration, decomposition, and transpiration activities as well as decoloration retardation. There was significant difference between "wet" storage in 3 weeks and "dry" storage in 2 weeks. In separate pulsing solution trials, various germicides were tested, as well as PGRs to maintain the green color of leaves and turgidity. Prolonging vase life was attained with the application of optimal solution such as HQS, $AgNO_3$, GA, BA and sucrose. This also retarded senescence in leaves of cut flower stems. Fresh cut chrysanthemum can be transported using a refrigerated van with $5{\sim}7^{\circ}C$. Increasing consumption and usage of cut chrysanthemum of various cultivars would require efficient transport system, and effective information exchange among producer, wholesaler, and consumer.

The NCAM Land-Atmosphere Modeling Package (LAMP) Version 1: Implementation and Evaluation (국가농림기상센터 지면대기모델링패키지(NCAM-LAMP) 버전 1: 구축 및 평가)

  • Lee, Seung-Jae;Song, Jiae;Kim, Yu-Jung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.307-319
    • /
    • 2016
  • A Land-Atmosphere Modeling Package (LAMP) for supporting agricultural and forest management was developed at the National Center for AgroMeteorology (NCAM). The package is comprised of two components; one is the Weather Research and Forecasting modeling system (WRF) coupled with Noah-Multiparameterization options (Noah-MP) Land Surface Model (LSM) and the other is an offline one-dimensional LSM. The objective of this paper is to briefly describe the two components of the NCAM-LAMP and to evaluate their initial performance. The coupled WRF/Noah-MP system is configured with a parent domain over East Asia and three nested domains with a finest horizontal grid size of 810 m. The innermost domain covers two Gwangneung deciduous and coniferous KoFlux sites (GDK and GCK). The model is integrated for about 8 days with the initial and boundary conditions taken from the National Centers for Environmental Prediction (NCEP) Final Analysis (FNL) data. The verification variables are 2-m air temperature, 10-m wind, 2-m humidity, and surface precipitation for the WRF/Noah-MP coupled system. Skill scores are calculated for each domain and two dynamic vegetation options using the difference between the observed data from the Korea Meteorological Administration (KMA) and the simulated data from the WRF/Noah-MP coupled system. The accuracy of precipitation simulation is examined using a contingency table that is made up of the Probability of Detection (POD) and the Equitable Threat Score (ETS). The standalone LSM simulation is conducted for one year with the original settings and is compared with the KoFlux site observation for net radiation, sensible heat flux, latent heat flux, and soil moisture variables. According to results, the innermost domain (810 m resolution) among all domains showed the minimum root mean square error for 2-m air temperature, 10-m wind, and 2-m humidity. Turning on the dynamic vegetation had a tendency of reducing 10-m wind simulation errors in all domains. The first nested domain (7,290 m resolution) showed the highest precipitation score, but showed little advantage compared with using the dynamic vegetation. On the other hand, the offline one-dimensional Noah-MP LSM simulation captured the site observed pattern and magnitude of radiative fluxes and soil moisture, and it left room for further improvement through supplementing the model input of leaf area index and finding a proper combination of model physics.

Flow and Mixing Behavior at the Tidal Reach of Han River (한강 감조구간에서의 흐름 및 혼합거동)

  • Seo, Il Won;Song, Chang Geun;Lee, Myung Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6B
    • /
    • pp.731-741
    • /
    • 2008
  • Previous studies on the numerical simulation at the tidal reach of Han River tend to restrict downstream boundary as Jeon-ryu station due to difficulties in gaining cross section data and tidal elevation values at Yu-do. But, in this study, geometries beyond the confluence of Gok-reung stream and Im-jin River are constructed based on the numerical sea map; tidal elevation at the downstream boundary, Yu-do is estimated by harmonic analysis of In-cheon tide gage station so that hydrodynamic and diffusion behavior have been analyzed. The domain ranging from Shin-gok submerged weir to Yu-do is selected (which is 36.8 km in length). RMA-2 and RAM4 developed by Il Won Seo (2008) are applied to simulate flow and diffusion behavior, respectively. Numerical results of flow characteristic are compared with the measured data at Jeon-ryu station. Simulation is carried out from June 23 to 25 in 2006 on the ground that hydrologic data is satisfactory and tidal difference is huge during that period. The result shows that reverse flow occurs 5 times according to the tidal elevation at Yu-do and the maximum reverse flow is observed up to Jang-hang IC, which is 32.9 km in length. Also analysis is focused on the process of generation and disappearance of reverse flow, the distribution of water surface elevation and velocity along the maximum velocity line, and the transport of nonconservative pollutant. Pollutant injected from Gul-po stream spreads widely across the river; however, the size of BOD cloud entering from Gok-reung stream is relatively small because water depth at the mid and left side becomes deeper and maximum velocity occurs along the right bank so that transverse mixing is completed quickly. Finally, mixing characteristic of horizontal salinity distribution is obtained by estimating the salinity input with analytical solution of 1D advection-dispersion equation.

Evaluation of the Usefulness of MapPHAN for the Verification of Volumetric Modulated Arc Therapy Planning (용적세기조절회전치료 치료계획 확인에 사용되는 MapPHAN의 유용성 평가)

  • Woo, Heon;Park, Jang Pil;Min, Jae Soon;Lee, Jae Hee;Yoo, Suk Hyun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.2
    • /
    • pp.115-121
    • /
    • 2013
  • Purpose: Latest linear accelerator and the introduction of new measurement equipment to the agency that the introduction of this equipment in the future, by analyzing the process of confirming the usefulness of the preparation process for applying it in the clinical causes some problems, should be helpful. Materials and Methods: All measurements TrueBEAM STX (Varian, USA) was used, and a file specific to each energy, irradiation conditions, the dose distribution was calculated using a computerized treatment planning equipment (Eclipse ver 10.0.39, Varian, USA). Measuring performance and cause errors in MapCHECK 2 were analyzed and measured against. In order to verify the performance of the MapCHECK 2, 6X, 6X-FFF, 10X, 10X-FFF, 15X field size $10{\times}10$ cm, gantry $0^{\circ}$, $180^{\circ}$ direction was measured by the energy. IGRT couch of the CT values affect the measurements in order to confirm, CT number values : -800 (Carbon) & -950 (COUCH in the air), -100 & 6X-950 in the state for FFF, 15X of the energy field sizes $10{\times}10$, gantry $180^{\circ}$, $135^{\circ}$, $275^{\circ}$ directionwas measured at, MapPHAN allocated to confirm the value of HU were compared, using the treatment planning computer for, Measurement error problem by the sharp edges MapPHAN Learn gantry direction MapPHAN of dependence was measured in three ways. GANTRY $90^{\circ}$, $270^{\circ}$ in the direction of the vertically erected settings 6X-FFF, 15X respectively, and Setting the state established as a horizontal field sizes $10{\times}10$, $90^{\circ}$, $45^{\circ}$, $315^{\circ}$, $270^{\circ}$ of in the direction of the energy-6X-FFF, 15X, respectively, were measured. Without intensity modulated beam of the third open arc were investigated. Results: Of basic performance MapCHECK confirm the attenuation measured by Couch, measured from the measured HU values that are assigned to the MAP-PHAN, check for calculation accuracy for the angled edge of the MapPHAN all come in a range of valid measurement errors do not affect the could see. three ways for the Gantry direction dependence, the first of the meter built into the value of the Gantry $270^{\circ}$ (relative $0^{\circ}$), $90^{\circ}$ (relative $180^{\circ}$), 6X-FFF, 15X from each -1.51, 0.83% and -0.63, -0.22% was not affected by the AP/PA direction represented. Setting the meter horizontally Gantry $90^{\circ}$, $270^{\circ}$ from the couch, Energy 6X-FFF 4.37, 2.84%, 15X, -9.63, -13.32% the difference. By-side direction measurements MapPHAN in value is not within the valid range can not, because that could be confirmed as gamma pass rate 3% of the value is greater than the value shown. You can check the Open Arc 6X-FFF, 15X energy, field size $10{\times}10$ cm $360^{\circ}$ rotation of the dose distribution in the state to look at nearly 90% pass rate to emerge. Conclusion: Based on the above results, the MapPHAN gantry direction dependence by side in the direction of the beam relative dose distribution suitable for measuring the gamma value, but accurate measurement of the absolute dose can not be considered is. this paper, a more accurate treatment plan in order to confirm, Reduce the tolerance for VMAT, such as lateral rotation investigation in order to measure accurate absolute isodose using a combination of IMF (Isocentric Mounting Fixture) MapCHEK 2, will be able to minimize the impact due to the angular dependence.

  • PDF

Biomass and distribution of Antarctic Krill, Euphausia superba, in the Northern part of the South Shetland Islands, Antarctic Ocean (남극 남쉐틀란드 군도 북부 해역의 크릴 분포 및 자원량)

  • KANG Donhyug;HWANG Doojin;KIM Suam
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.6
    • /
    • pp.737-747
    • /
    • 1999
  • To estimate biomass and distribution of the Antarctic krill (Euphausia superba), hydroacoustic survey was conducted on board of R/V Yuzhmorgeologiya, which was chartered by Korea Antarctic Research Program (KARP) group from 18 to 21 December 1998, in the northern part of the South Shetland Islands, Antarctic Ocean, The scientific echo sounder (towing body type) used was EK- 500 (SIMRAD, Norway) with echo integrator (BI-500) at 38 kHz frequency and recorded mean backscattering cross-section coefficient (SA) per 1 $mile^2$ of sea surface. Also, Bongo net sampling was carried out to determine the size of krill and CTD (Conductivity, Temperature and Depth) casting to understand physical structure. Water column was divided into 5 layers (22$\~$65 m, 65$\~$115 m, l15$\~$65 m, 165$\~$215 m and 215$\~$315 m) to know vertical distribution of krill biomass. The standard length of krill collected was between 30 mm and 51 mm, and adult krill had single mode (41 mm). Maximum horizontal length of krill patch was about 35 nautical mile and vertical thickness was about 275 m. High density of krill was appeared in frontal area between Circumpolar Deep Water (>$1^{\circ}C$) and very low temperature water mass (< $-0.5^{\circ}C$) that originate from Weddell Sea. According to the results calculated using target strength equation, krill density was totally higher in continental slope and open water areas than in coastal area. In the study area, krill seems to distribute in depth; density was low at first layer ($\={\rho}=17.0\;g/m^2$) and higher at fourth layer ($\={\rho}=40.19\;g/m^2$). The estimated krill biomass at total survey area and water column was about 2.77 million metric ion ($\={\rho}=151.0\;g/m^2$) and coefficient of valiance ( CV, $\%$) was 19.92. The proportions and biomass of krill biomass at each layer were as follows; layer 1 ($11.3\%$, 0.31 million metric ton, CV=16.24), layer 2 ($13.3\%$, 0.37 million metric ton, CV=34.91), layer 3 ($23.7\%$, 0.66 million metric ton, CV=41.5), layer 4 ($26.6\%$, 0.74 million metric ton, CV=27.84) and layer 5 ($25\%$, 0.69 million metric ton, CV= 26.83).

  • PDF

Anatomical and Physical Properties of Pitch Pine (Pinus rigida Miller) - The Characteristics of Stem, Branch, Root and Topwood - (리기다소나무(Pinus rigida Miller)의 목재해부학적(木材解剖學的) 및 물리학적성질(物理學的性質)에 관(關)한 연구(硏究) - 간(幹), 지(枝), 근(根), 초두목(梢頭木)의 특성(特性)을 중심(中心)으로 -)

  • Lee, Phil Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.16 no.1
    • /
    • pp.33-62
    • /
    • 1972
  • Pitch pine (Pinus rigida Miller) in Korea has become one of the major silvicultural species for many years since it was introduced from the United States of America in 1907. To attain the more rational wood utilization basical researches on wood properties are primarily needed, since large scale of timber production from Pitch Pine trees has now been accomplishing in the forested areast hroughout the country. Under the circumustances, this experiment was carried out to study the wood anatomical, physical and mechanical properties of Pitch Pine grown in the country. Materials used in this study had been prepared by cutting the selected pitch pine trees from the Seoul National University Forests located in Suwon. To obtain and compare the anatomical and physical properties of the different parts of tree such as stem, branch, top and rootwood, this study had been divided into two categories (anatomical and physical). For the anatomical study macroscopical and microscopical features such as annual ring, intercellular cannal, ray, tracheid, ray trachid, ray parenchyma cell and pit etc. were observed and measured by the different parts (stem, branch, root and topwood) of tree. For the physical and mechanical properties the moisture content of geen wood, wood specific gravity, shrinkage, compression parallel to the grain, tension parallel and perpendicular to the grain, radial and tangential shear, bending, cleavage and hardness wree tested. According to the results this study may be concluded as follows: 1. The most important comparable features in general properties of wood among the different parts of tree were distinctness and width of annual ring, transition from spring to summerwood, wood color, odor and grain etc. In microscopical features the sizes of structural elements of wood were comparable features among the parts of tree. Among their features, length, width and thickness of tracheids, resin ducts and ray structures were most important. 2. In microscopical features among the different parts of tree stem and topwood were shown simillar reults in tissues. However in rootwood compared with other parts on the tangential surface distinctly larger ray structures were observed and measured. The maximum size of unseriate ray was attained to 27 cell ($550{\mu}$) height in length and 35 microns in width. Fusiform rays were formed occasionally the connected ray which contain one or several horizontal cannals. Branchwood was shown the same features like stemwood but the measured values were very low in comparing with other parts of tree. 3. Trachid length measured among the different parts of tree were shown largest in stem and shortest in branchwood. In comparing the tracheid length among the parts the differences were not shown only between stem and rootwood, but shown between all other parts of tree. Trachid diameters were shown widest in rootwood and narrowest in branchwood, and the differences among the different parts were not realized. Wall thickness were shown largest value in rootwood and smallest in branchwood, and the differences were shown between root and top or branchwood, and between stem and branch or top wood, but not shown between other parts of tree. 4. Moisture contents of green wood were shown highest in topwood and lowest in heartwood of stem. The differences among the different parts were recognized between top or heartwood and other parts of tree, but not between root and branchwood or root and sapwood. 5. Wood specific gravities were shown highest in stem and next order root and branchwood, but lowest in topwood. The differences were shown clearly between stemwood and other parts of tree, but not root and branchwood. However the significant difference is realized as most lowest value in topwood. 6. In compression strength parallel to the grain compared among the different parts of tree at the 14 percent of moisture content, highest strength was appeared in stem, next order branch and rootwood, but lowest in topwood. 7. In bending strength compared among the different parts of tree at the 14 percent of moisture content clearly highest strength was shown in branchwood, next order stem and root, but lowest in topwood. Though the branchwood has lower specific gravity than stemwood it was shown clearly high bending strength.

  • PDF