• Title/Summary/Keyword: horizontal shear strength

Search Result 242, Processing Time 0.027 seconds

A Study on Deflection Characteristic of Composite Girder with Incomplete Interaction (불완전 합성형의 처짐특성에 관한 연구)

  • Yong, Hwan Sun;Kim, Seok Tae;Kim, Yun Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.3 s.36
    • /
    • pp.437-449
    • /
    • 1998
  • In order that the steel girder and the concrete slab act as a composite structure, the connectors must have adequate strength and stiffness. If there are no horizontal or vertical separations at the interface, the connectors are described as rigid, and complete interaction can be said to exist under these idealized circumstances. However, all connectors are flexible to some extent, and therefore incomplete interaction always exists. This paper presents a practical structural analysis of composite girders with incomplete interaction by three methods. One is the stiffness matrix method derived from the general solutions of differential equation, another is the finite element analysis that alternate method of solution treats the structure as a frame and defines the spring as an additional member, and the other is the finite element analysis using principle of virtual work. The deflection characteristic of composite girder is investigated using these three methods. Also, this paper propose a simplified procedure of estimating a degree of imperfection for a composite girder with incomplete interaction using the sectional properties of girder and spring constants of shear connectors.

  • PDF

Proposals of Indeterminate Strut-Tie Model and Load Distribution Ratio for Design of RC Corbels (철근콘크리트 코벨의 설계를 위한 부정정 스트럿-타이 모델 및 하중분배율의 제안)

  • Chae, Hyun-Soo;Yun, Young-Mook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.197-200
    • /
    • 2008
  • The RC corbels with the ratio of shear span-to-effective depth less than 1 are commonly used to transfer loads from beams to columns. The ultimate strengths and structural behaviors of RC corbels are controlled by the shear span-to-effective depth ratio, strength of concrete, shape and quantity of the reinforcement, and geometry of corbels. In this study, a simple indeterminate strut-tie model reflecting all characteristics of the ultimate strengths and complicated structural behaviors is presented for the design of RC corbels. In addition, a load distribution ratio, defined as a magnitude of load transferred by a horizontal truss mechanism, is proposed to help structural designers perform the design of RC corbels by using the strut-tie model approaches of current design codes. The ultimate strengths of 30 RC corbels tested to failure are evaluated by using the ACI 318-05's strut-tie model code for the validity check of the proposed indeterminate strut-tie model and load distribution ratio.

  • PDF

Stability Analysis of the CNG Storage Cavern in Accordance with Design Parameters (설계변수에 따른 압축천연가스 저장 공동의 거동 분석)

  • Park, Yeon-Jun;Moon, Hyung-Suk;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.23 no.3
    • /
    • pp.192-202
    • /
    • 2013
  • The domestic demand of natural gas has increased continuously due to the sudden rise of oil price and regulations on greenhouse gas to global warming. In order to improve the supply security of natural gas market in Korea, the agreement on supply of pipeline natural gas (PNG) in Russia was signed between Gazprom and Korea Gas Corporation in 2008. If the supply plan of Russian natural gas is realized, underground storage facilities would be required in order to balance supply and demand of natural gas because the gas demand is concentrated in the winter. This study investigated the safety of the storage facility in quantitative way considering several design parameters such as gas pressure, depth of the storage cavern, rock condition and in-situ horizontal stress ratio. Two dimensional stress analyses were conducted using axi- symmetry condition to examine the behavior of cavern depending upon suggested design parameters. Results showed that the factor of safety, defined as the ratio of 'shear strength'/'shear stress', was largely affected by the depth, rock class and gas pressure but was insensitive to the coefficient of lateral pressure(Ko).

Development of a Sampler that Minimizes Sample Disturbance and Review of its Applicability (인발시 시료이탈을 최소화한 불교란시료 채취 샘플러 개발 및 적용성 검토)

  • Kim, Jongkwan;Han, Jin-Tae;Park, Ka-hyun;Shin, Hyu-Soung;Zhuang, Li;Yeom, Sun;Kim, Ki-Seog
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.3
    • /
    • pp.17-27
    • /
    • 2023
  • In order to accurately determine soil characteristics, it is necessary to collect undisturbed samples, and it is important to collect these samples with minimal disturbance. In this study, a sampler that minimizes sample disturbance was developed by attaching a catcher to the tip, and its applicability was reviewed through in situ sampling, X-ray CT, and laboratory tests. Results confirmed that horizontal cracks are likely to occur when using the Shelby tube sampler, whereas these cracks can be suppressed when using the newly developed sampler. Moreover, consolidation and shear test results showed that the samples collected using the newly developed sampler showed higher maximum shear strength compared to those collected using the Shelby tube sampler.

Research on the deformation characteristics and support methods of the cross-mining roadway floor influence by right-angle trapezoidal stope

  • Zhaoyi Zhang;Wei Zhang
    • Geomechanics and Engineering
    • /
    • v.37 no.3
    • /
    • pp.293-306
    • /
    • 2024
  • Influenced by the alternating effects of dynamic and static pressure during the mining process of close range coal seams, the surrounding rock support of cross mining roadway is difficult and the deformation mechanism is complex, which has become an important problem affecting the safe and efficient production of coal mines. The paper takes the inclined longwall mining of the 10304 working face of Zhongheng coal mine as the engineering background, analyzes the key strata fracture mechanism of the large inclined right-angle trapezoidal mining field, explores the stress distribution characteristics and transmission law of the surrounding rock of the roadway affected by the mining of the inclined coal seam, and proposes a segmented and hierarchical support method for the cross mining roadway affected by the mining of the close range coal seam group. The research results indicate that based on the derived expressions for shear and tensile fracture of key strata, the ultimate pushing distance and ultimate suspended area of a right angle trapezoidal mining area can be calculated and obtained. Within the cross mining section, along the horizontal direction of the coal wall of the working face, the peak shear stress is located near the middle of the boundary. The cracks on the floor of the cross mining roadway gradually develop in an elliptical funnel shape from the shallow to the deep. The dual coupling support system composed of active anchor rod support and passive U-shaped steel shed support proposed in this article achieves effective control of the stability of cross mining roadways, which achieves effective control of floor by coupling active support and preventive passive support to improve the strength of the surrounding rock itself. The research results are of great significance for guiding the layout, support control, and safe mining of cross mining roadways, and to some extent, can further enrich and improve the relevant theories of roof movement and control.

Experimental study on simplified steel reinforced concrete beam-column joints in construction technology

  • Teraoka, Masaru;Morita, Koji;Sasaki, Satoshi;Katsura, Daisuke
    • Steel and Composite Structures
    • /
    • v.1 no.3
    • /
    • pp.295-312
    • /
    • 2001
  • The purpose of this paper is to propose a new type of steel reinforced concrete (SRC) beam-column joints and to examine the structural performance of the proposed joints, which simplify the construction procedure of steel fabrication, welding works, concrete casting and joint strengthening. In the proposed beam-column joints, the steel element of columns forms continuously built-in crossing of H-sections (${\Box}$), with adjacent flanges of column being connected by horizontal stiffeners in a joint at the level of the beam flanges. In addition, simplified lateral reinforcement (${\Box}$) is adopted in a joint to confine the longitudinal reinforcing bars in columns. Experimental and analytical studies have been carried out to estimate the structural performance of the proposed joints. Twelve cruciform specimens and seven SRC beam-column subassemblage specimens were prepared and tested. The following can be concluded from this study: (1) SRC subassemblages with the proposed beam-column joints show adequate seismic performances which are superior to the demand of the current code; (2) The yield and ultimate strength capacities of the beam-to-column connections can be estimated by analysis based on the yield line theory; (3) The skeleton curves and the ultimate shear capacities of the beam-column joint panel are predicted with a fair degree of accuracy by considering a simple stress transfer mechanism.

On The Development of Design Wave Loads in Classification Rules(I) (선급 강선규칙의 설계 파랑하중 산식 개발(I))

  • J.Y. Song;Y.K. Chon;T.B. Ha
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.4
    • /
    • pp.112-126
    • /
    • 1993
  • In this paper, unified requirements of IACS on longitudinal strength of ships are investigated using nonlinear wave loads analyses under short term irregular waves. Also, analyses on IACS wave data were carried out for the purpose of presenting the guideline for future use. While keeping theoretical consistensy, the rule requirements for horizontal shear force, bending moment and torsional moment are newly proposed for the ships of large deck openings bases on the calculation results for 17 sample ships. The requirements for side shell hydrodynamic pressure are also presented. All the calculated results are compared with other Societies and present KR rules. These formula will be checked when corresponding requirements of structural scantling are determined.

  • PDF

Effectiveness of some conventional seismic retrofitting techniques for bare and infilled R/C frames

  • Kakaletsis, D.J.;David, K.N.;Karayannis, C.G.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.4
    • /
    • pp.499-520
    • /
    • 2011
  • The effectiveness of a technique for the repair of reinforced concrete members in combination with a technique for the repair of masonry walls of infilled frames, damaged due to cyclic loading, is experimentally investigated. Three single - story, one - bay, 1/3 - scale frame specimens are tested under cyclic horizontal loading, up to a drift level of 4%. One bare frame and two infilled frames with weak and strong infills, respectively, have been tasted. Specimens have spirals as shear reinforcement. The applied repair technique is mainly based on the use of thin epoxy resin infused under pressure into the crack system of the damaged RC joint bodies, the use of a polymer modified cement mortar with or without a fiberglass reinforcing mesh for the damaged infill masonry walls and the use of CFRP plates to the surfaces of the damaged structural RC members, as external reinforcement. Specimens after repair, were retested in the same way. Conclusions concerning the effectiveness of the applied repair technique, based on maximum cycles load, loading stiffness, and hysteretic energy absorption capabilities of the tested specimens, are drawn and commented upon.

Basic Design of Subsea Manifold Suction Bucket (심해저 원유 생산용 매니폴드 기초 석션 버켓 기본 설계)

  • Woor, Sun-Hong;Lee, Kangsu;Choung, Joonmo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.2
    • /
    • pp.161-168
    • /
    • 2018
  • This paper presents the design procedure of the suction bucket used to support a subsea manifold. The soil-suction bucket interaction numerical analysis technique was verified by comparing the present results with a reference data. In order to simulate the soil-bucket interaction analyses of a subsea manifold structure, various material data such as undrained shear strength, elastic modulus, and poisson ratio of soft clay in Gulf of Mexico were collected from reference survey. We proposed vertical and horizontal design loads based on system weights and current-induced drag forces. Under the assumption that diameter of the suction bucket was 3.0 m considering real dimension of the subsea manifold frame structures, aspect ratio was decided to be 3.0 based on reference survey. The ultimate bearing load components were determined using tangent intersection method. It was proved that the two design load components were less than ultimate bearing loads.

Poisson's Ratio Prediction of Soil Using the Consolidation Undrained Triaxial Compression Test (압밀비배수 삼축압축실험을 이용한 지반의 포아송비 예측)

  • Lim, Seongyoon;Yu, Seokchoel;Kim, Yuyong;Kim, Myeonghwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.4
    • /
    • pp.45-51
    • /
    • 2020
  • The poisson's ratio was obtained from the effective vertical stress and horizontal stress of consolidation-undrained test. It was analyzed void ratio verse poisson's ratio. At the result, the effective friction angle was increase with relative density increased, was decreased the poisson's ratio. The empirical equation of void ratio and poisson's ratio was showed very high correlation r2=0.846. The empirical equation was showed that the smaller the void ratio in the fine grained soil than granular soil. In the case of 0.85 times the correlation analysis equation of granular and fine grained soil, the experimental results were shown very similarly. In especially, the poisson's ratio prediction results was shown within 5% of the error range, was revalidation 0.85 times the correlation analysis equation using the void ratio. In this study, correlation analysis equation of the granular and fine grained soil was more reliability of the poisson's ratio prediction results apply to the void ratio than dry unit weight.