• Title/Summary/Keyword: horizontal seismic coefficient

Search Result 40, Processing Time 0.024 seconds

Ground motion intensity measure to evaluate seismic performance of rocking foundation system

  • Ko, Kil-Wan;Ha, Jeong-Gon
    • Earthquakes and Structures
    • /
    • v.21 no.6
    • /
    • pp.563-576
    • /
    • 2021
  • The rocking foundation is effective for reducing structural seismic demand and avoiding overdesign of the foundation. It is crucial to evaluate the performance of rocking foundations because they cause plastic hinging in the soil. In this study, to derive optimized ground motion intensity measures (IMs) for rocking foundations, the efficiency of IMs correlated with engineering demand parameters (EDPs) was estimated through the coefficient determination using a physical modeling database for rocking shallow foundations. Foundation deformations, the structural horizontal drift ratio, and contribution in drift from foundation rotation and sliding were selected as crucial EDPs for the evaluation of rocking foundation systems. Among 15 different IMs, the peak ground velocity exhibited the most efficient parameters correlated with the EDPs, and it was discovered to be an efficient ground motion IM for predicting the seismic performance of rocking foundations. For vector regression, which uses two IMs to present the EDPs, the IMs indicating time features improved the efficiency of the regression curves, but the correlation was poor when these are used independently. Moreover, the ratio of the column-hinging base shear coefficient to the rocking base shear coefficient showed obvious trends for the accurate assessment of the seismic performance of rocking foundation-structure systems.

Probabilistic seismic hazard assessment of Sanandaj, Iran

  • Ghodrati Amiri, Gholamreza;Andisheh, Kaveh;Razavian Amrei, Seyed Ali
    • Structural Engineering and Mechanics
    • /
    • v.32 no.4
    • /
    • pp.563-581
    • /
    • 2009
  • In this paper, the peak horizontal ground acceleration over the bedrock (PGA) is calculated by a probabilistic seismic hazard assessment (PSHA). For this reason, at first, all the occurred earthquakes in a radius of 200 km of Sanandaj city have been gathered. After elimination of the aftershocks and foreshocks, the main earthquakes were taken into consideration to calculate the seismic parameters (SP) by Kijko (2000) method. The seismotectonic model of the considered region and the seismic sources of the region have been modeled. In this research, Sanandaj and its vicinity has been meshed as an 8 (vertical lines) * 10 (horizontal lines) and the PGA is calculated for each point of the mesh using the logic tree method and the five attenuation relationships (AR) with different weighted coefficient. These calculations have been performed by the Poisson distribution of four hazard levels. Then by using it, four regional maps of the seismic hazard regions have been provided for Sanandaj and its vicinity. The results show that the maximum and minimum value of PGA for the return periods of 75, 225, 475, 2475 years are (0.114, 0.074) (0.157, 0.101), (0.189, 0.121) and (0.266, 0.170), respectively.

Performance Evaluation of IRB System Using Seismic Isolation Test (내진시험을 통한 IRB 시스템의 성능 평가)

  • Park, Young-Gee;Ha, Sung Hoon;Woo, Jae Kwan;Choi, Seung-Bok;Kim, Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.401-406
    • /
    • 2013
  • This paper presents experimental evaluation of IRE (isolation roller bearing) seismic isolation device. From the combination of base isolation on the IRE system displacement response spectrum and acceleration response spectrum, the compressive strength and the coefficient of friction experiments. Also the IRE system is evaluated by environment test according to KS standards. Both the resonance and seismic experiments using a combination of the IRE and Natural Rubber Bearing (NRB) are performed in order to analyze the seismic isolation of the IRE system dynamic characteristics. For the given load and exciting frequency, the resonant frequency becomes lower, but the resonant magnification remains to be same. However, it is shown that when we consider the IRE only, the vibration on the table with the horizontal movement and the independent horizontal displacement due to the rolling motion of the plate and roller are significantly reduced. This result verifies that the proposed optimal design method of the IRE system is very effective.

  • PDF

A Study on the Estimation of Slope Stability under the Influence of the Vertical Direction Seismic Coefficient Using Lower Bound Analysis (하계해석을 이용한 수직방향 지진계수 영향에 따른 비탈면의 안정성 평가 연구)

  • Choi, Sang-Ho;Kim, Jong-Min;Kim, Yong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.12
    • /
    • pp.123-131
    • /
    • 2012
  • Recent earthquake records indicate that the vertical component of earthquake loading, generally neglected in seismic slope stability analysis, has a significant influence on the stability. This is particularly true for the earthquakes originating inside the continent, not from its boundaries. Therefore the design of geotechnical structures without consideration of vertical component of earthquake loading may result in unsafe design. In this study, with a consideration of the effect of vertical seismic loading, the horizontal yield seismic coefficients under various slope conditions are estimated, using the lower bound limit analysis. In addition, the equation for the determination of the critical direction (either upward or downward) of vertical seismic loading is proposed.

Seismic Response Analysis of the Center-Core Rockfill Dam (중심코아령사력댐의 지진응답해석)

  • 오병현;임정열;이종옥
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.139-146
    • /
    • 2001
  • The seismic safety analysis were performed for the center-core rockfill dam(CCRD) The static and pseudo-static FEM analysis using seismic coefficient Method, and dynamic FEM analysis using Hachinohe earthquake wave(0.12g) were used for the seismic safety of CCRD. The results of seismic analysis were that the factor of safety of down slope was 1.5, horizontal displacement is about 14.3cm, and vertical displacement is 3.3cm at dam creast. The model dam did not show any seismic stability problems for 0.12g. And much more research is still necessary in seismic safety of CCRD.

  • PDF

Seismic Response Analysis of the Concrete Face Rockfill Dam (콘크리트표면차수벽령 석괴댐의 지진응답해석)

  • 오병현;임정열;이종옥
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.147-154
    • /
    • 2001
  • In this study, comprehensive seismic performance analysis were performed for the concrete face rockfill dam(CFRD) designed seismic coefficient method(0. 10g). The static and pseudo-static FEM analysis, limited equilibrium method and dynamic FEM analysis were used for the dam safety analysis. The results of the seismic analysis were that the minimum factor of safety of down slope was 1.2 and horizontal displacement increased 8cm and vertical displacement increased 1.2cm at dam crest rather than those of static condition. The model dam did not show any serious tai lure in seismic stabi1ity for 0.13g. And much more research is still necessary in seismic safety of CFRD.

  • PDF

Seismic response of steel reinforced concrete frame-bent plant of CAP1400 nuclear power plant considering the high-mode vibration

  • Biao Liu;Zhengzhong Wang;Bo Zhang;Ningjun Du;Mingxia Gao;Guoliang Bai
    • Steel and Composite Structures
    • /
    • v.46 no.2
    • /
    • pp.221-236
    • /
    • 2023
  • In order to study the seismic response of the main plant of steel reinforced concrete (SRC) structure of the CAP1400 nuclear power plant under the influence of different high-mode vibration, the 1/7 model structure was manufactured and its dynamic characteristics was tested. Secondly, the finite element model of SRC frame-bent structure was established, the seismic response was analyzed by mode-superposition response spectrum method. Taking the combination result of the 500 vibration modes as the standard, the error of the base reactions, inter-story drift, bending moment and shear of different modes were calculated. Then, based on the results, the influence of high-mode vibration on the seismic response of the SRC frame-bent structure of the main plant was analyzed. The results show that when the 34 vibration modes were intercepted, the mass participation coefficient of the vertical and horizontal vibration mode was above 90%, which can meet the requirements of design code. There is a large error between the seismic response calculated by the 34 and 500 vibration modes, and the error decreases as the number of modes increases. When 60 modes were selected, the error can be reduced to about 1%. The error of the maximum bottom moment of the bottom column appeared in the position of the bent column. Finally, according to the characteristics of the seismic influence coefficient αj of each mode, the mode contribution coefficient γj•Xji was defined to reflect the contribution of each mode to the seismic action.

Evaluating contradictory relationship between floor rotation and torsional irregularity coefficient under varying orientations of ground motion

  • Zhang, Chunwei;Alam, Zeshan;Samali, Bijan
    • Earthquakes and Structures
    • /
    • v.11 no.6
    • /
    • pp.1027-1041
    • /
    • 2016
  • Different incident angles of ground motions have been considered to evaluate the relationship between floor rotation and torsional irregularity coefficient. The issues specifically addressed are (1) variability in torsional irregularity coefficient and floor rotations with varying incident angles of ground motion (2) contradictory relationship between floor rotation and torsional irregularity coefficient. To explore the stated issues, an evaluation based on relative variation in seismic response quantities of linear asymmetric structure under the influence of horizontal bi-directional excitation with varying seismic orientations has been carried out using response history analysis. Several typical earthquake records are applied to the structure to demonstrate the relative variations of floor rotation and torsional irregularity coefficient for different seismic orientations. It is demonstrated that (1) Torsional irregularity coefficient (TIC) increases as the story number decreases when the ground motion is considered along reference axes of the structure. For incident angles other than structure's reference axes, TIC either decreases as the story number decreases or there is no specific trend for TIC. Floor rotation increases in proportion to the story number when the ground motion is considered along reference axes of structure. For incident angles other than structure's reference axes, floor rotation either decreases as the story number increases or there is no specific trend for floor rotation and (2) TIC and floor rotation seems to be approximately inversely proportional to each other when the ground motion is considered along reference axes of the structure. For incident angles other than structure's reference axes, the relationship can even become directly proportional instead of inversely proportional.

A Study on Optimal Design Factors of Frictional bearing for Isolated Bridges (교량의 마찰형 지진격리장치 최적 인자 결정에 관한 연구)

  • 고현무;박관순;김동석;송현섭
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.451-458
    • /
    • 2002
  • To secure structures from strong earthquakes occurred recently and design economically seismic isolation design is spread rapidly. Specially, frictional isolator has superiority in application to bridge because it has many advantages. however, because isolator lies between pier and girder, responses of pier and superstructure contradict each other and we need to control the two responses to minimize the bridge's failure probability. In this study, frictional coefficient and horizontal stiffness is defined as design parameters of frictional isolator. the optimal design parameters of frictional isolator to minimize the bridge's failure probability are presented according to strength of earthquake and soil conditions. The result says that optimal friction coefficient is higher as the strength of earthquake is increased. And it is also higher as the soils are more flexible. But, optimal horizontal stiffness of rubber spring is insensitive to strength of earthquake and soil condition.

  • PDF

Seismic bearing capacity of shallow embedded strip footing on rock slopes

  • Das, Shuvankar;Halder, Koushik;Chakraborty, Debarghya
    • Geomechanics and Engineering
    • /
    • v.30 no.2
    • /
    • pp.123-138
    • /
    • 2022
  • Present study computes the ultimate bearing capacity of an embedded strip footing situated on the rock slope subjected to seismic loading. Influences of embedment depth of strip footing, horizontal seismic acceleration coefficient, rock slope angle, Geological Strength Index, normalized uniaxial compressive strength of rock mass, disturbance factor, and Hoek-Brown material constant are studied in detail. To perform the analysis, the lower bound finite element limit analysis method in combination with the semidefinite programming is utilized. From the results of the present study, it can be found that the magnitude of the bearing capacity factor reduces quite substantially with an increment in the seismic loading. In addition, with the increment in slope angle, further reduction in the value of the bearing capacity factor is observed. On the other hand, with an increment in the embedment depth, an increment in the value of the bearing capacity factor is found. Stress contours are presented to describe the combined failure mechanism of the footing-rock slope system in the presence of static as well as seismic loadings for the different embedment depths.