• Title/Summary/Keyword: horizontal pile load test

Search Result 47, Processing Time 0.026 seconds

Bearing Capacity of Driven H-Piles in Embankment (성토지반에 타입된 H형강 말뚝의 지지거동)

  • 박영호;정경자;김성환;유성근;이재혁;박종면
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.173-182
    • /
    • 2000
  • To find axial and lateral responses of impact-driven H piles in embankment(SM), the H piles are instrumented with electric strain gages, dynamic load test is performed during driving, and then the damage of strain gages is checked simultaneously. Axially and laterally static load tests are performed on the same piles after one to nine days as well. Then load-settlement behavior is measured. Furthermore, to find the set-up effect in H pile, No. 4, 16, 26, and R6 piles are restriked about 1, 2, and 14 days after driving. As results, ram height and pile capacity obtained from impact driving control method become 80cm and 210.3∼242.3ton, respectively. At 15 days after driving, allowable bearing capacity by CAPWAP analysis, which 2.5 of the factor of safety is applied for ultimate bearing capacity, increases 10.8%. Ultimate bearing capacity obtained from axially static load test is 306∼338ton. This capacity is 68.5∼75.7% at yield force of pile material and is 4∼4.5 times of design load. Allowable bearing capacity using 2 of the factor of safety is 153∼169ton. Initial stiffness response of the pile is 27.5ton/mm. As the lateral load increases, the horizontal load-settlement behaves linearly to which the lateral load reaches up to 17ton. This reason is filled with sand in the cavity formed between flange and web during pile driving. As the result of reading with electric strain gages, flange material of pile is yielded at 19ton in horizontal load. Thus allowable load of this pile material is 9.5ton when the factor of safety is 2.0. Allowable lateral displacement of this pile corresponding to this load is 23∼36mm in embankment.

  • PDF

Estimation of Coefficient of Horizontal Subgrade Reaction by the Inverse Analysis on the Lateral Load Test Results (수평재하시험 역해석을 통한 수평지반반력계수 산정)

  • Ryu, Soo-Yong;Kwak, No-Kyung;Park, Min-Chul;Jeong, Sang-Guk;Lee, Song
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.8
    • /
    • pp.15-24
    • /
    • 2012
  • Even though decision of coefficient of horizontal subgrade reaction is important in analysis for pile under lateral load, the behavior of pile under lateral loading is estimated differently due to using established suggestion. Therefore this study estimates coefficient of horizontal subgrade reaction by using Chang's method or numerical inverse analysis method with the result of lateral load test. Then this study investigates the adequacy and reliability for coefficient of horizontal subgrade reaction. The analytical results of coefficient of horizontal subgrade reaction with lateral load test showed that coefficient of horizontal subgrade reaction with Chang's method was underestimated as compared with inverse analysis. Deformation modulus of foundation by Standard Specifications for Highway Bridges and Eo${\fallingdotseq}$1,400~1,600N showed similar range like range of coefficient of horizontal subgrade reaction with lateral load test.

Pile and adjacent ground behaviors depending on horizontal offset between pile and tunnel subjected to horizontally loaded single pile (수평하중을 받는 단일 말뚝 하부 터널굴착 시 말뚝-터널 수평이격거리에 따른 말뚝 및 인접 지반 거동)

  • Ahn, Ho-Yeon;Oh, Dong-Wook;Lee, Yong-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.5
    • /
    • pp.685-703
    • /
    • 2017
  • Recently, as the number of high-rise building and earthquake occurrence are increasing, it is more important to consider horizontal load such as wind and seismic loads, earth pressure, for the pile foundation. Also, development of underground space in urban areas is more demanded to meet various problem induced by growing population. Many studies on pile subjected to horizontal load have been conducted by many researchers. However, research regarding interactive behavior on pile subjected to horizontal load with tunnel are rare, so far. In this study, therefore, study on the behaviors of ground and horizontal and vertical loads applied to single pile was carried out using laboratory model test and numerical analysis. The pile axial force and ground deformation were investigated according to offset between pile and tunnel (0.0D, 1.0D, 2.0D: D = tunnel diameter). At the same time, close range photogrammetry was used to measure displacement of underground due to tunnelling during laboratory model test. The results from numerical analysis were compared to that from laboratory model test.

Load-displacement characteristics of belled tension piles embeded in cohesionless soils (사질토지반에 근입된 벨타입 인발말뚝의 하중-변위 특성)

  • Hong, Won-Pyo;Choi, Yong-Sung;Lim, Dae-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1114-1119
    • /
    • 2010
  • Pile foundations have been used for upholding superstructure's loads. The researches on pile foundations subjected to compressive forces or horizontal loads have been actively carried out. However, recently, pile foundations, which are subjected to pull-out forces, are getting increased. The study on the pull-out resistance of piles becomes to be important. In addition, it is expected that belled piles will be used more and more, since the belled piles are effective to resist the pull-out forces. But there is still a lack of research on pull-out resistance of belled piles. Therefore, in order to investigate the resisting effect against pull-out of belled piles which is embedded in cohesionless soil. a series of pull-out test is performed on belled piles in field. Especially, the relation between load and displacement is analyzed through the pull-out test.

  • PDF

Evaluation of Bearing Capacities of Large Size Non-welded Composite Piles by 3-Dimensional Numerical Analysis (3차원 수치해석을 이용한 대구경 무용접 복합말뚝의 지지거동 분석)

  • Park, Jae-Hyun;Kim, Sung-Ryul;Le, Chi-Hung;Chung, Moon-Kyung
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.35-41
    • /
    • 2011
  • Recently, as large structures, which should support large design loads have been constructed, the study on the large diameter composite pile becomes necessary. The large diameter composite pile has the diameter over 700mm and consists of two parts of the upper steel pipe pile and the lower PHC pile by a mechanical joint. In this research, to analyze the bearing capacity and the material strength of the composite pile, three dimensional numerical analyses were performed. First, the numerical modeling method was verified by comparing the calculated load-movement curves of the pile with those of the field pile load tests. Then, a total of twelve analyses were performed by varying pile diameter and loading direction for three pile types of PHC, steel pipe and composite piles. The results showed that the vertical and the horizontal load-movement curves of the composite pile were identical with those of the steel pipe pile and the horizontal material strength of the composite pile was 60-80% larger than that of the PHC pile.

Experimental Study on the Behavior Characteristics of Single Steel Pile in Sand Subjected to Lateral Loadings (사질토 지반에서 수평하중에 따른 단일강관말뚝의 거동특성에 관한 실험적 연구)

  • Kim, Daehyeon;Lee, Tae-Gwang;Kim, Sun-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3548-3556
    • /
    • 2015
  • In order to fulfill the needs of reliable and economically feasible foundation, engineers should consider not only the working load that can endure extreme conditions but also apprehending precise behavior of continuous dynamic load while designing the foundation of offshore wind power generators. To actualize the foundation, a model pile was made in miniature. Also, calibration chamber was made and a 500mm height of sand-bed was made to perform "static lateral load experiment" and "repetitive loading experiment", total of two Lateral load tests. As a result, in Static Lateral load test, the bigger length/diameter of model pile led an increase in load displacement. However, when performing "Cyclic Lateral load test", the increase in number of under loading led the decrease in horizontal displacement from each repeated lateral load. While performing Static Lateral load test and repeated loading experiment, we could observe the decreasing in the rate of ultimate lateral load capacity increase of the pile. Also, it turned out that the higher relative density of the ground, the lower ultimate lateral load capacity by repeated horizontal loading.

Behavioral Analysis of Triaxial Micropile (TMP) through Field Loading Test and 3D-numerical Analysis (삼축 마이크로파일(TMP)의 현장수평재하시험과 3차원 수치해석을 통한 거동 분석)

  • Kim, Taehyun;Ahn, Kwangkuk;An, Sungyul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.4
    • /
    • pp.15-23
    • /
    • 2021
  • Various micropiles have been developed through research related to micropiles, which have been carried out with the increased use of micropiles. Among the micropile construction methods being developed, the triaxial micropile (tmp), which is recently developed for the purpose of increasing the horizontal bearing capacity (seismic resistance), is representative. The three-axis micropile has the advantage of a method that can resist horizontal load more effectively because three micropiles installed inclined on each axis resist horizontal load. However, there is a problem in effectively using this pile method due to insufficient research on the support characteristics of the triaxial group micropile. In order to effectively utilize the triaxial group micropile (tmp), it is required to evaluate the bearing capacity for the factors that affect the horizontal bearing capacity of the pile. Therefore, in this study, field horizontal loading Tests were performed for each load direction, field loading Tests were verified through three-dimensional finite element analysis, behavioral characteristics of triaxial micropiles were evaluated, and appropriate horizontal bearing capacity was analyzed in consideration of horizontal load directions.

A Study on the Characteristic Behavior of the Lateral Load Piles using the Strain Wedge Model and Laboratory Model Test (실내모형실험과 변형률 쐐기모델을 이용한 수평하중을 받는 말뚝의 거동 특성에 관한 연구)

  • Kim, HongTaek;Han, YeonJin;Kim HongLak
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.2
    • /
    • pp.103-112
    • /
    • 2012
  • The most of original horizontal bearing capacity theory of the pile is not efficiently to consider interaction between soil and pile because it is only to consider the earth pressure theory and separately the ground form pile. In recent, in order to improve the pile technology, it is necessary to confirm the real behaviour characteristics of pile under lateral load. Hence, to evaluate the behaviour characteristics of the single and group pile under lateral loads using the strain wedge model that could consider the interaction between soil and piles. Primarily, laboratory scale down model tests was carried out to predict the behaviour characteristics on real size piles using the strain wedge model. The comparative analyses between model test and numerical analysis for the evaluation of whole behaviour were conducted.

A Estimation Method of Settlement for Granular Compaction Pile (조립토 다짐말뚝의 침하량 산정기법)

  • Kim, Hong-Taek;Hwang, Jung-Soon;Park, Jun-Yong;Yoon, Chang-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.286-293
    • /
    • 2005
  • In soft ground the settlement criterion usually governs. Therefore, it is very important not only reasonable assessment of the allowable bearing capacity of the soil but also reasonable assessment of settlement. In the previous studies by many other researchers, load concentration ratio and settlement reduction factor are usually proposed for estimating the settlement of granular compaction piles. In the previous studies, the reinforced ground with granular compaction piles is simplified as composite ground and the analysis is performed with in the basis of this assumption. However, the lateral deformation of granular compaction pile could not be considered and only the relative vertical strength between pile and soils could be considered in the analysis. In this study, a method adapting the Tresca failure criterion is proposed for calculating settlement of granular compaction pile. Proposed method can be considered the strength of pile material, pile diameter, installing distance of pile and the deformation behavior of vertical and horizontal directions of pile. In the presented study, large-scale field load test is performed and the results are described. Also, predictions of settlements from the proposed method are compared with the results of the load test. In addition, a series of parametric study is performed and the design parameters are analyzed.

  • PDF

Lateral Load Test for Various Aseismatic Methods of Pile Heads of Pier Type Quay Walls (잔교식 안벽의 말뚝 두부 내진 보강기법에 따른 수평재하실험)

  • 이용재;한진태;장인성;김명모
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.98-106
    • /
    • 2003
  • To construct pile-supported wharf structures that must support heavy horizontal loads, both vertical piles and batter piles are used. Batter piles are used to secure the bearing capacity against the horizontal loads. However, past case histories have shown that the heads of batter piles are vulnerable because these heads are subjected to excessive axial loads during earthquakes. Therefore, the aseismatic reinforcement method must be developed to prevent batter pile heads from breaking due to excessive seismic loads. Two different connecting methods of either inserting rubber or ball-bearing between batter pile head and upper plate were proposed to improve the aseismatic efficiency. Three large-scale pile head models(rubber type model, ball-bearing type model, and fixed type model) were manufactured and horizontal loading tests were peformed for these models. The results showed that the force-displacement relationship of the fixed type model was linear, but that of the rubber type model and the ball-bearing type model was bilinear. The increase in the horizontal displacement led to the increase in the horizontal stiffness of the rubber type models and the decrease in that of the ball-bearing type model. Compared with the values for fixed type model, the damping ratios of the rubber type model and the ball-bearing type model increased about 33~185% and 263~269%, respectively.

  • PDF