• Title/Summary/Keyword: horizontal joint

Search Result 381, Processing Time 0.027 seconds

Shear Strength of the Vertical Joints in Precast Concrete Large Panel Structures (대형 콘크리트 판넬구조의 수직접합부 전단강도에 관한 연구)

  • 서수연;이원호;이리형
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.1
    • /
    • pp.111-119
    • /
    • 1994
  • The strength of vertical joints of precast concrete large panel structures depends on the many factors, such as the bond strength of grout concrete (or mortar), the interlocking of the shear keys, the dowel action of horizontal bars. Many experimental studies have been conducted to in vestigate the shear strength of the vertical joints. In domestic, a few design formulas to predict shear strength of the vertical joint were proposed by some investigators, but formulas were based on limited experimental results. The objective of this paper is to propose a suitable formula for the shear strength of vertical joints with 94 vertical joints experimental data using the modified Mohr-Coulomb's 4ield theory and regression analysis. From the comparison of the proposed formula with others, it is shown that the proposed formula can be used economically for the design of vertical joints.

Analysis of Sports Biomechanical Variable on the Motions of Left and Right Spikes of Volleyball (배구 레프트 스파이크와 라이트 스파이크 동작에 대한 운동역학적 변인 비교 분석)

  • Cho, Ju-Hang;Ju, Myung-Duck
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.4
    • /
    • pp.125-134
    • /
    • 2006
  • The purpose of this study was to analyze the Biomechanical elements by looking at the differences on the motions of the right and left spikes of right-handed offense volleyball players, using 3D image analysis and force platform. For that purpose, spike motions of six male university volleyball players were recorded three times each using two 16mm high speed cameras and the speed of recording was set at 60 frames/sec. The coordinated raw data was leveled as 6Hz using low pass filtering method and the calculation of 3D coordinates was done by using a DLT (Direct Linear Transformation) method. Also KWON 3D program was used to analyze the variables. Through the experiments and research, the following results were found: That is, in case of the right spike, the required time from the toss to the impact, which affected the success rate of offense showed as longer and on the take-off, the exact timing to touch the ball was longer because the pace between right and left feet was wider, and also after the jump, the distance between the feet indicated shorter, than the left. In addition, the degree of somersault and horizontal adduction of shoulder joint was smaller and the degree of medial rotation of shoulder joint showed bigger than the left, so it indicated that it was not centered on the body, but by the arm with an axis of shoulder using a swing motion. After the impact, the speed of the ball indicated slower compared to the left spike.

Relationship of Follow-through Movements to Target Accuracy in Compound Archers (컴파운드 양궁의 팔로우 스루 동작과 사격 정확도의 상관관계)

  • Junkyung Song;Kitae Kim
    • Korean Journal of Applied Biomechanics
    • /
    • v.34 no.1
    • /
    • pp.34-44
    • /
    • 2024
  • Objective: This study aimed to investigate how the movements occurring during the follow-through phase after releasing an arrow among elite compound archers, are associated with the arrow impact points on the target. Method: Nine elite archers performed consecutive compound archery shooting under conditions identical to actual competitions using their own bows and equipment. Motion capture system and force platform were utilized to record the changes in joint positions and center of pressure, respectively. Principal component analysis was employed to identify the patterns in which multidimensional joint positions and COP changes were organized with horizontal and vertical coordinates of arrow impact points. Subsequently, correlation analysis quantified the relationship between individual variables and the coordinates of arrow impacts on the target. Results: We found a common organizational pattern in which the two axes of the impact point coordinates were grouped into the first two principal components. The movements of the upper and lower limbs following release exhibited opposite patterns in the anterior-posterior axis, with significant correlations observed between the arrow impact points of the horizontal axis and the left shoulder, right elbow, left hip, and both knees. Additionally, the lateral movements induced by the reaction force upon arrow release showed significant associations with the vertical coordinates of the impact points. Particularly, the correlations between the movements of the left shoulder and elbow, as well as the bilateral hip and right knee, were consistently observed among all participants. Conclusion: These findings implied that the post-release movements could significantly influence the trajectory and impact points of the arrows in compound archery. We suggest that a consistent and controlled movement during the follow-through phase may be more beneficial for optimizing shooting accuracy and precision rather than minimizing movements.

Sacral Insufficiency Fractures : How to Classify?

  • Bakker, Gesa;Hattingen, Joerg;Stuetzer, Hartmut;Isenberg, Joerg
    • Journal of Korean Neurosurgical Society
    • /
    • v.61 no.2
    • /
    • pp.258-266
    • /
    • 2018
  • Objective : The diagnosis of insufficiency fractures of the sacrum in an elder population increases annually. Fractures show very different morphology. We aimed to classify sacral insufficiency fractures according to the position of cortical break and possible need for intervention. Methods : Between January 1, 2008 and December 31, 2014, all patients with a proven fracture of the sacrum following a low-energy or an even unnoticed trauma were prospectively registered : 117 females and 13 males. All patients had a computer tomography of the pelvic ring, two patients had a magnetic resonance imaging additionally : localization and involvement of the fracture lines into the sacroiliac joint, neural foramina or the spinal canal were identified. Results : Patients were aged between 46 and 98 years (mean, 79.8 years). Seventy-seven patients had an unilateral fracture of the sacral ala, 41 bilateral ala fractures and 12 patients showed a fracture of the sacral corpus : a total of 171 fractures were analyzed. The first group A included fractures of the sacral ala which were assessed to have no or less mechanical importance (n=53) : fractures with no cortical disruption ("bone bruise") (A1; n=2), cortical deformation of the anterior cortical bone (A2; n=4), and fracture of the anterolateral rim of ala (A3; n=47). Complete fractures of the sacral ala (B; n=106) : parallel to the sacroiliac joint (B1; n=63), into the sacroiliac joint (B2; n=19), and involvement of the sacral foramina respectively the spinal canal (B3; n=24). Central fractures involving the sacral corpus (C; n=12) : fracture limited to the corpus or finishing into one ala (C1; n=3), unidirectional including the neural foramina or the spinal canal or both (C2; n=2), and horizontal fractures of the corpus with bilateral sagittal completion (C3; n=8). Sixty-eight fractures proceeded into the sacroiliac joint, 34 fractures showed an injury of foramina or canal. Conclusion : The new classification allowes the differentiation of fractures of less mechanical importance and a risk assessment for possible polymethyl methacrylate leaks during sacroplasty in the direction of the neurological structures. In addition, identification of instable fractures in need for laminectomy and surgical stabilization is possible.

Comparison of Kinematic Factors between Old and Young People during Walking on Level and Uneven Inclined Surfaces (평지와 고르지 않은 지면 경사로 보행 시 고령자와 젊은 성인의 운동학적 요인 비교)

  • Choi, Jin-Seung;Kang, Dong-Won;Mun, Kyung-Ryul;Bang, Yun-Hwan;Tack, Gye-Rae
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.1
    • /
    • pp.33-39
    • /
    • 2010
  • The purpose of this study was to investigate the changes in walking pattern of the elderly during inclined walkway with uneven surfaces and level walking. 10 young($26.3{\pm}1.3$ years, $174.3{\pm}5.3\;cm$, $69.5{\pm}9.5\;kg$) and 13 elderly($72.4{\pm}5.2$ years, $164.5{\pm}5.4\;cm$, $66.1{\pm}9.6\;kg$) male subjects were participated in the experiment. Experiment consisted of 2 walking conditions: horizontal and inclined walkway with uneven surfaces. 3D motion capturing system were used to acquire and analyze walking motion data with sampling frequency of 120 Hz. To compare differences between conditions, kinematic variables(walking speed, stance-swing ratio, hip joint angle, knee joint angle, ankle joint angle, pelvic rotation angle) were used. Results showed that there were some changes of elderly walking pattern in inclined walkway with uneven surfaces: hip joint(adduction and rotation) and pelvic movement pattern. These changes by inclination and surface may affect gait pattern of young subjects as well as elderly subjects. However, in case of elderly it revealed more unstable gait than the young. Further study is necessary to clarify changes in walking pattern for elderly by considering various gait variables including head movement and various walkway conditions.

Kinematic Comparative Analysis of Long Turns between Experienced and Inexperienced Ski Instructors

  • Jo, Hyun Dai
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.1
    • /
    • pp.17-25
    • /
    • 2020
  • Objective: The purpose of this study is to provide a better understanding of long turn mechanism by describing long turns after kinematic analysis and provide skiers and winter sports instructors with data through which they are able to analyze right postures for turns in skiing in a systematic, rational and scientific manner. Method: For this, a mean difference of kinematic variables (the center of gravity (CG) displacement of distance, trajectory, velocity, angle) was verified against a total of 12 skiers (skilled and unskilled, 6 persons each), regarding motions from the up-start to down-end points for long turns. Results: First, concerning the horizontal displacement of CG during a turn in skiing, skilled skiers were positioned on the right side at the upstart and edge-change points at a long turn. There was no difference in anteroposterior and vertical displacements. Second, in terms of CG-trajectory differences, skilled skiers revealed a significant difference during a long turn. Third, regarding skiing velocity, skilled skiers were fast at the edge-change and maximum inclination points in long turns. Fourth, there was no difference in a hip joint in terms of a lower limb joint angle. In a knee joint, a large angle was found at the up-start point among skilled skiers when they made a long turn. Conclusion: In overall, when skilled and unskilled skiers were compared, to make a good turn, it is required to turn according to the radius of turn by reducing weight, concerning the CG displacement. Regarding the CG-trajectory differences, the edge angle should be adjusted via proper inclination angulation. In addition, a skier should be more leaned toward the inside of a turn when they make a long turn. In terms of skiing velocity, it is needed to reduce friction on snow through the edging and pivoting of the radius or turn according to curvature and controlling ski pressure. Regarding a lower limb joint angle, it is important to make an up move by increasing ankle and knee angles instead of keeping the upper body straight during an up motion.

Experimental Study on Load Transfer Characteristic by Adjacent Slope Excavation in a Jointed Rock Mass (절리암반에서 근접 사면굴착에 의한 하중전이특성에 대한 실험적 연구)

  • Lee, Jin-Wook;Lee, Sang-Duk
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.2
    • /
    • pp.321-328
    • /
    • 2009
  • A optimal reinforcement in the joint rock slope excavation adjacent to an existing tunnel would be influenced by excavation distance from the tunnel, slope angel, and joint conditions but has been empirically determined so far. In this study, large scale model tests were conducted to find out the relationship between load translation on the excavation surface and bebavior of the tunnel according to excavation steps of the jointed rock slope. Consequently, two main parameters, joint dip and sloped angle were investigated in those model tests. From the test results, it was found that tunnel deformation was the largest one when the excavation of joints located closer to the tunnel crown or invert. Stability of the slope and the tunnel were varied in a certain excavation stage related to the angle of slope. In the future, based on results of this study the reinforcement method for the tunnel and slope safety in a jointed rock mass will be demonstrated.

Design of a Robotic Device for Effective Shoulder Rehabilitation (효과적인 견관절 재활을 위한 로봇의 설계)

  • Lee, Kyoung-Soub;Park, Jeong-Ho;Park, Hyung-Soon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.8
    • /
    • pp.505-510
    • /
    • 2017
  • This paper presents a low-cost robotic device for shoulder rehabilitation, which is capable of treating various shoulder disabilities. A 3-DOF passive shoulder joint tracking module was designed to allow for translational motion of the shoulder joint center during arm swing, which is essential for natural shoulder movement. The weight of the user's arm and the device were compensated for by springs, to enable gravity-free shoulder motion. In order to reduce the device's cost, only one actuator was used, which can be aligned with the user's shoulder joint in various orientations. The device is capable of implementing five representative shoulder motions, including flexion/extension, abduction/adduction, horizontal abd/adduction, internal/external rotation, and oblique raise. The proposed low-cost shoulder rehabilitation robot is expected to provide effective rehabilitation for patients with various shoulder impairments.

A Kinematical Analysis of Side Kick Motion in Taekwondo (태권도 옆차기 동작의 운동학적 분석)

  • Park, Kwang-Dong
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.2
    • /
    • pp.49-63
    • /
    • 2003
  • For this study, four male university Taekwondo players were randomly chosen, between the weight categories of 60Kg and 80Kg. Their side kicks (yeop chagi), which are part of foot techniques, were kinematically analyzed in terms of the time, angle, and angular velocity factors involved with the kicks through the three-dimensional imaging. The results of the analysis are as fellows. 1. Time factor The first phase(preparation) was 0.48sec on average, accounting for 60% of the entire time spent; the second phase(the minimum angle of the knee joint) was 0.21sec on average, taking up 26% of the whole time spent; and the third phase(hitting) was 0.11sec on average, representing 14% of the entire time spent. 2. Angle factor In the first phase(preparation), rotating their bodies along the long axis, the players bended their hip and knee joints a lot, by moving fast in the vertical and horizontal directions, in the second phase(the minimum angle of the knee joint), the players continued to extend their bodies along the vertical axis, while pronating their lower legs and bending their hip and knee joints a lot to reduce the radius of gyration, and in the third phase(hitting), they extended their knee joints greatly so that the angle movements of their lower bodies shifted to circle movements. 3. Angular velocity factor In the first phase(preparation), the angular velocity of the hip and knee joints increased. while moving horizontally and rotating the body along the long axis; in the second phase(the minimum angle of the knee joint), the angular velocity increased by bending the hip and knee joints fast to reduce the rotation radios; and in the third phase(hitting), the angular velocity was found to have increased, by rotating the body along the long axis to increase the angular velocity and shifting the angular momentum of the pronated knee joint to the circular momentum.

Evaluation of Effect of Rock Joints on Seismic Response of Tunnels (터널의 지진응답에 대한 암반 절리의 영향 평가)

  • Yoo, Jin-Kwon;Chang, Jaehoon;Park, Du-Hee;Sagong, Myung
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.9
    • /
    • pp.41-55
    • /
    • 2014
  • In performing seismic analysis of tunnels, it is a common practice to ignore the rock joints and to assume that the rock mass surrounding the tunnel is continuous. The applicability of this assumption has not yet been validated in detail. This study performs a series of pseudo-static discrete element analyses to evaluate the effect of rock joint on the seismic response of tunnels. The parameters considered are joint intersection location, joint spacing, joint stiffness, joint dip, and interface stiffness. The results show that the joint stiffness has the most critical influence on the tunnel response. The tunnel response increases with the spacing, resulting in localized concentration of moment and shear stress. The response of the tunnel is the lowest for joints dipping at $45^{\circ}$. This is because large shear stresses result in rotation of the principal planes by $45^{\circ}$. In summary, the weathered and smooth, vertical or horizontal, and widely spaced joint set will significantly increase the tunnel response under seismic loading. The tunnel linings are shown to be most susceptible to damage due to induced shear stress, and therefore should be checked in the seismic design.