• Title/Summary/Keyword: horizontal bars

Search Result 103, Processing Time 0.024 seconds

Kinematical Analysis of the YEGA Motion on the Uneven Parallel Bars (이단 평행봉 YEGA 동작의 운동학적 분석)

  • Lee, Young-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.1
    • /
    • pp.111-125
    • /
    • 2005
  • This study was intended to assist athletes in having a technical understanding of the Yega motion and provide basic material for improving their competitive ability by analyzing the kinematic variable of the Yega motion during the competition of the uneven parallel bar of female gymnastics. For this purpose, the game of female gymnastics participating in the uneven parallel bar game was personally videotaped using the DLT(direct linear transformation) method. An attempt was made to make a comparative analysis of the Yega motion by dividing the final first to third places into the upper group('A' group) and the sixth to eighth places into the lower group('B' group). Based on the results of actual analysis on the scenes of actual game, the following conclusion was concluded: 1. Athletes in the 'A' group showed the shorter required time on the flight phase(P3) than counterparts in the 'B' group. 2. Athletes in the 'A' group showed the little width in the horizontal displacement of the center of gravity than counterparts in the 'B' group. But athletes in the 'A' group exhibited the somewhat greater relative vertical height of the center of the body. 3. Athletes in the 'A' group showed the greater resultant velocity at the lowest point of the center of the body(E2) and at the point in time of release(E3) compared to counterparts in the 'B' group.

An Experimental Study on the Structural Bechavior of Two-layered Reinforced Concrete Slabs in Bridges (교량에서 2층 분리타설한 철근콘크리트 슬래브의 구조거동에 관한 실험연구)

  • 오병환;이형준;이명규;한승환
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.3
    • /
    • pp.162-172
    • /
    • 1994
  • The flexural and horizontal shear behavior of overlaid concrete slabs with polymer interface is investigated in the present study. An experimental program was set up and several series of overlaid concrete slabs have been tested to study the effect of different surface preparations and dowel bars between old slab and overlay under service and ultimate loads. 'The cracking and ulti mate load behavior for various cases including acryl emulsion treatment and doweled joints has been studied. The present study indica.tes that the overlaid concrete slabs behave integrally with existing bottom slabs up to ultimate range for rough and doweled joints with polymer interface. The pres ent study provides a firm base for the realistic design of two-layered RC slabs in bridges.

Enhancing the Performance of High-Strength Concrete Corbels Using Hybrid Reinforcing Technique (하이브리드 보강기법을 활용한 고강도 콘크리트 내민받침의 성능 향상)

  • Yang, Jun-Mo;Lee, Joo-Ha;Min, Kyung-Hwan;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.13-16
    • /
    • 2008
  • Corbels are short cantilevers that project from the faces of a column and are a type of stress disturbed member, resisting both the ultimate shear force applied to them by the beam, and the ultimate horizontal force caused by shrinkage, temperature changes, and creep of the supported elements. Recently, as there have been an increase in the use of high-strength concrete and the concern about corrosion problems, lots of researches about hybrid reinforcing technique, applying strategically high performance reinforcements to the concrete elements, are performed. In this study, fiber reinforced high strength concrete corbels were constructed and tested for applying hybrid reinforcing technique to the corbels using steel fibers and headed bars. The results showed that the performance in terms of load carrying capacities, stiffness, ductility, and crack width was improved, as the steel fibers were added and the percentage of steel fibers was increased. In addition, the corbel specimens used headed bars as main tension ties showed superior load carrying capacities, stiffness, and ductility to the corbel specimens anchored main tension ties by welding to the transverse bars.

  • PDF

Virtual Prototyping of Automated System for Adjustable Row Spacing of Hydroponic Gullies in Multilayer Plant Factory

  • Ashtiani-Araghi, Alireza;Lee, Chungu;Cho, Seong-In;Rhee, Joong-Yong
    • Journal of Biosystems Engineering
    • /
    • v.40 no.1
    • /
    • pp.35-46
    • /
    • 2015
  • Purpose: To present a flexible and accurate autonomous solution for creating any desired row spacing value between the hydroponic gullies in multilayer growing units, and evaluate the capabilities and performance of the relevant automated system through the use of virtual prototyping technique. Methods: To build the virtual prototype of the system, CAD models of its different parts, including an autonomous vehicle and the mechanical mechanisms embedded in the multilayer growing unit, were developed and imported into the RecurDyn simulation software. In order to implement the automated row spacing operation, three spacing modes with different loading cycles and working steps were defined, and the operation of the system was simulated to obtain the target row spacing values specified for each of these modes. Results: Motion profiles related to the horizontal displacement of: 1) the lower and upper sliding bars installed in the cultivation layers, and 2) the hydroponic gullies, during the simulation of the system operation, were generated and analyzed. No deviation from the specified target spacing values was observed at the end of simulations for all spacing modes. Conclusions: The results of the motion analysis obtained by simulating the system operation confirm the effectiveness of the control scheme proposed for automated row spacing of gullies. It was also found that proper sequencing of the loading cycles and the precision of the working strokes of the upper bars are the critical factors for establishing a certain row spacing value. Based on the simulation results, precise control of the back and forth motions of the upper bars is highly necessary for sound operation of the real system.

Development and Performance Evaluation of the Shear Connector of Composite Beam with Vertical Bars (직봉의 기능을 포함한 합성보의 전단연결재 개발과 성능평가)

  • Kim, Sang-Seup;Park, Dong-Soo;Boo, Yoon-Seob
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.6
    • /
    • pp.725-736
    • /
    • 2011
  • In a composite beam, a shear connector is installed to resist the horizontal shear on an interface between steel beams and reinforced concrete slabs. The steel-wire-integrated deck plate slab is commonly used at the wide section beam. Then vertical bars are installed at the upper wire of the ends of the steel truss girder to ensure safety during the construction. The new type of shear connector is made of deformed bar and steel plates, and must function as vertical bars but must have higher shear capacity. This paper examines the ways to develop and utilize this new shear connector. From the push-out experiments, a shear connector made of a continuous deformed bar and steel plate showed a higher shear capacity and ductility than a ${\phi}16$ stud connector, and functioned as a vertical bar.

High Heat-load Slits for the PLS Multi-pole Wiggler (포항방사광가속기의 다극 위글러용 고 열량부하 슬릿)

  • Gil, K.H.;Kim, C.K.;Chung, C.W.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.1
    • /
    • pp.46-51
    • /
    • 2007
  • The HFMX((High Flux Macromolecular X-ray crystallography) beamline at Pohang Accelerator Laboratory uses beams from a multi-pole wiggler. Two horizontal and vertical slits relevant to high heat-load are installed at its front-end. In order to treat high heat-load with reducing beam scattering, the horizontal slit has two Glidcop blocks with a grazing incidence angle of $10^{\circ}$ of a grazing-incidence knife-edge configuration. The blocks adjust the slit gap by being translated along guides by two actuating bars, respectively. Water flowing through holes, drilled along the actuating bars, cools the heat-load of both blocks. The vortical slit has the same structure as the horizontal slit except its installation direction with respect to the vacuum chamber and its grazing incidence angle. By virtue of a pair of blocks translating on guides, no alignment between both blocks is required and the installed slits show stable operating performance. The cooling performance of the two slits has been also shown to be acceptable. In this paper, the detailed explanation for the design of the two slits is presented and their operating performance is discussed.

Strength Properties of Wooden Model Retaining Wall Using Preservative Treated Square Timber of Domestic Pinus rigida Miller (리기다소나무 방부 정각재를 이용한 목재 옹벽의 강도 성능 평가)

  • Park, Jun-Chul;Kim, Keon-Ho;Lee, Dong-Heub;Hwang, Won-Joung;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.532-540
    • /
    • 2010
  • The strength properties of wooden model retaining wall made of pitch pine (Pinus rigida Miller) was evaluated. Three different types of wooden model retaining wall were made of the 11cm square timber treated with CUAZ-2 (Copper Azole). The retaining wall was made into the 4 layers of crossbar and the 3 layers of vertical-bar, of which the size was 86 cm high, 200 cm long and 96 cm wide. Type I was control and in Type II 20 cm vertical-bars and 93 cm vertical-bars were arranged alternately to decrease wood usage. TypeIII was similar to TypeII except that the connection between crossbars was reinforced with the wooden armature. In each type, the strength properties of retaining wall were investigated by horizontal loading test and the deformation of structure by image processing (AICON 3D DPA-PRO system). In horizontal loading test of Type I, Type II and Type III was 63.17, 57.80, and 60.97 kN/m, respectively. The deformation of the top layer in Type II was 1.5 times larger than in Type I and Type III. Consequently, the economic efficiency and strength performance were better in Type III than in Type I and Type II.

Kinematical Analysis of Tichonkich Motion in Parallel Bars (평행봉 Tichonkich 동작의 운동학적 분석)

  • Park, Jong-Hoon;Back, Jin-Ho
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.21-30
    • /
    • 2005
  • The purpose of this study is helps to make full use for perfect performance by grasping the defects of Tichonkich motion performed by athlete CSM For this, the study analyzed kinematical variables through Tichonkich motions performed at the first selection competition(1st trial) and final selection competition(2nd trial) for the dispatch to the 28th Athens Olympic Games using the three-dimensional cinematographical method with a high-speed video camera, and obtained the following results. 1. During Tichonkich motion, the execution time of up swing and the right hand moving to the left bar was shorter in the 2nd trial than the 1st one, while the execution time of down swing, the support of the left bar and the right hand moving to the right bar was longer in the 2nd trial than the 1st trial. 2. The horizontal position of COG in the 2nd trial was -35cm in the 1st stage, 42cm in the 3rd stage and 29cm in the 4th stage, that is, it showed a great swing focused on the circular movement compared to the 1st trial, while the vertical position of COG was -59cm in the 2nd stage, that is, it showed a small swing focused on a up and down movement. Also the 5th stage vertical position was 98cm, and the 6th stage vertical position was 95cm in the 2nd trial which were higher than those of the 1st trial, so it has provided magnificence required in the modern gymnastics. 3. And it was indicated that the horizontal velocity at the down swing phase proceeded forward more rapidly in the 2nd trial than that in the 1st trial, and the reverse ascent made a rapid vertical rise lessening left and right velocity change. And in the 5th stage, the 2nd trial was kept very slower in horizontal, vertical and left and right velocity that in the 1st trial, so it reached a handstand with leisurely movement. 4. In the 2nd trial, shoulder joint of the 1st, 2nd, 3rd stages kept a larger angle than that in the 1st trial, that is, it made a great swing while in the 1st trial, it showed a swing movement dependent on kick movement by the flexion and extension of hip joint. Also in the 2nd trial, the body formed a vertical posture with both hands supporting the left bar and hip joint was kept larger as $198^{\circ}$ and $190^{\circ}$ in the 5th and 6th stage than that in the 1st trial, so it made a handstand with the body uprightly stretched out, and magnificent and stable movement.

Design and behavior of 160 m-tall post-tensioned precast concrete-steel hybrid wind turbine tower

  • Wu, Xiangguo;Zhang, Xuesen;Zhang, Qingtan;Zhang, Dong;Yang, Xiaojing;Qiu, Faqiang;Park, Suhyun;Kang, Thomas H.K.
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.407-421
    • /
    • 2022
  • Prefabricated hybrid wind turbine towers (WTTs) are promising due to height increase. This study proposes the use of ultra-high performance concrete (UHPC) to develop a new type of WTT without the need to use reinforcement. It is demonstrated that the UHPC WTT structure without reinforcing bars could achieve performance similar to that of reinforced concrete WTTs. To simplify the design of WTT, a design approach for the calculation of stresses at the horizontal joints of a WTT is proposed. The stress distribution near the region of the horizontal joint of the WTT structure under normal operating conditions and different load actions is studied using the proposed approach, which is validated by the finite element method. A further parametric study shows that the degree of prestressing and the bending moment both significantly affect the principal stress. The shear-to-torsion ratio also shows a significant influence on the principal tensile stress.

New methodology of backbone curve for RC perforated shear walls

  • Yang, Jing-Shyang;Cheng, Franklin Y.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.3
    • /
    • pp.365-380
    • /
    • 2002
  • Following a series of experiments on isolated low-rise RC shear walls with openings, a theoretical study on the backbone curve of a perforated shear wall shows that there are some important observations from experimental results that make clear a semi-empirical formula of the backbone curve of a perforated wall. Critical shear zones can be depicted from the configuration of shear walls with openings. Different factors, including the size and location of shear wall openings, the wall's height/width ratio, horizontal and vertical steel bar ratios, and location and amount of diagonal steel bars are involved in the derivation of the backbone curve. Bending and shear effects are also considered in the paper. In addition, a comparison of load and displacement for solid and perforated shear walls is discussed. Generally, the comparison between experimental curves and computed backbone curves is favorable.