• Title/Summary/Keyword: horizontal angles

Search Result 344, Processing Time 0.022 seconds

Improved bracing systems to prevent exterior girder rotation during bridge construction

  • Ashiquzzaman, Md;Ibrahim, Ahmed;Lindquist, Will;Hindi, Riyadh
    • Steel and Composite Structures
    • /
    • v.32 no.3
    • /
    • pp.325-336
    • /
    • 2019
  • Concrete placement and temporary formwork of bridge deck overhangs result in unbalanced eccentric loads that cause exterior girders to rotate during construction. These construction loads affect the global and local stability of the girders and produce permanent girder rotation after construction. In addition to construction loads, the skew angle of the bridge also contributes to girder rotation. To prevent rotation (in both skewed and non-skewed bridges), a number of techniques have been suggested to temporarily brace the girders using transverse tie bars connecting the top flanges and embedded in the deck, temporary horizontal and diagonal steel pipes placed between the webs of the exterior and first interior girders, and permanent cross frames. This study includes a rigorous three-dimensional finite element analysis to evaluate the effectiveness of several bracing systems for non-skewed and several skewed bridges. In this paper, skew angles of $0^{\circ}$, $20^{\circ}$, $30^{\circ}$, and $45^{\circ}$ were considered for single- and three-span bridges. The results showed that permanent cross frames worked well for all bridges, whereas temporary measures have limited application depending on the skew angle of the bridge.

The critical angle of seismic incidence of transmission tower-line system based on wavelet energy method

  • Tian, Li;Dong, Xu;Pan, Haiyang;He, Xiaoyu
    • Earthquakes and Structures
    • /
    • v.17 no.4
    • /
    • pp.387-398
    • /
    • 2019
  • On the basis that ground motions may arrive at a structure from any horizontal direction and that different directions of seismic incidence would result in different structural dynamic responses, this paper focuses on orienting the crucial seismic incidence of transmission tower-line systems based on the wavelet energy method. A typical transmission tower-line system is chosen as the case study, and two finite element (FE) models are established in ABAQUS, with and without consideration of the interaction between the transmission towers and the transmission lines. The mode combination frequency is defined by considering the influence of the higher-order modes of the structure. Subsequently, wavelet transformation is performed to obtain the total effective energy input and the effective energy input rate corresponding to the mode combination frequency to further judge the critical angle of seismic incidence by comparing these two performance indexes under different seismic incidence angles. To validate this approach, finite element history analysis (FEHA) is imposed on both FE models to generate comparative data, and good agreement is found. The results demonstrate that the wavelet energy method can forecast the critical angle of seismic incidence of a transmission tower-line system with adequate accuracy, avoiding time-consuming and cumbersome computer analysis. The proposed approach can be used in future seismic design of transmission tower-line systems.

Effects of different day length and wind conditions to the seedling growth performance of Phragmites australis

  • Hong, Mun Gi;Nam, Bo Eun;Kim, Jae Geun
    • Journal of Ecology and Environment
    • /
    • v.45 no.2
    • /
    • pp.78-87
    • /
    • 2021
  • Background: To understand shade and wind effects on seedling traits of common reed (Phragmites australis), we conducted a mesocosm experiment manipulating day length (10 h daytime a day as open canopy conditions or 6 h daytime a day as partially closed canopy conditions) and wind speed (0 m/s as windless conditions or 4 m/s as windy conditions). Results: Most values of functional traits of leaf blades, culms, and biomass production of P. australis were higher under long day length. In particular, we found sole positive effects of long day length in several functional traits such as internode and leaf blade lengths and the values of above-ground dry weight (DW), rhizome DW, and total DW. Wind-induced effects on functional traits were different depending on functional traits. Wind contributed to relatively low values of chlorophyll contents, angles between leaf blades, mean culm height, and maximum culm height. In contrast, wind contributed to relatively high values of culm density and below-ground DW. Conclusions: Although wind appeared to inhibit the vertical growth of P. australis through physiological and morphological changes in leaf blades, it seemed that P. australis might compensate the inhibited vertical growth with increased horizontal growth such as more numerous culms, indicating a highly adaptive characteristic of P. australis in terms of phenotypic plasticity under windy environments.

The Effects of Gaze Direction on the Stability and Coordination of the Lower Limb Joint during Drop-Landing (드롭랜딩 시 시선 방향의 차이가 하지관절의 안정성과 협응에 미치는 영향)

  • Kim, Kewwan;Ahn, Seji
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.2
    • /
    • pp.126-132
    • /
    • 2021
  • Objective: The purpose of this study was to investigate how three gaze directions (bottom, normal, up) affects the coordination and stability of the lower limb during drop landing. Method: 20 female adults (age: 21.1±1.1 yrs, height: 165.7±6.2 cm, weight: 59.4±5.9 kg) participated in this study. Participants performed single-leg drop landing task on a 30 cm height and 20 cm horizontal distance away from the force plate. Kinetic and kinematic data were obtained using 8 motion capture cameras and 1 force plates and leg stiffness, loading rate, DPSI were calculated. All statistical analyses were computed by using SPSS 25.0 program. One-way repeated ANOVA was used to compared the differences between the variables in the direction of gaze. To locate the differences, Bonferroni post hoc was applied if significance was observed. Results: The hip flexion angle and ankle plantar flexion angle were significantly smaller when the gaze direction was up. In the kinetic variables, when the gaze direction was up, the loading rate and DPSI were significantly higher than those of other gaze directions. Conclusion: Our results indicated that decreased hip and ankle flexion angles, increased loading rate and DPSI when the gaze direction was up. This suggests that the difference in visual information can increase the risk of injury to the lower limb during landing.

Wake dynamics of a 3D curved cylinder in oblique flows

  • Lee, Soonhyun;Paik, Kwang-Jun;Srinil, Narakorn
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.501-517
    • /
    • 2020
  • Three-dimensional numerical simulations were performed to study the effects of flow direction and flow velocity on the flow regime behind a curved pipe represented by a curved circular cylinder. The cylinder is based on a previous study and consists of a quarter segment of a ring and a horizontal part at the end of the ring. The cylinder was rotated in the computational domain to examine five incident flow angles of 0-180° with 45° intervals at Reynolds numbers of 100 and 500. The detailed wake topologies represented by λ2 criterion were captured using a Large Eddy Simulation (LES). The curved cylinder leads to different flow regimes along the span, which shows the three-dimensionality of the wake field. At a Reynolds number of 100, the shedding was suppressed after flow angle of 135°, and oblique flow was observed at 90°. At a Reynolds number of 500, vortex dislocation was detected at 90° and 135°. These observations are in good agreement with the three-dimensionality of the wake field that arose due to the curved shape.

Experimental investigation of deformation behavior of geocell retaining walls

  • Altay, Gokhan;Kayadelen, Cafer;Canakci, Hanifi;Bagriacik, Baki;Ok, Bahadir;Oguzhanoglu, Muhammed Ahmet
    • Geomechanics and Engineering
    • /
    • v.27 no.5
    • /
    • pp.419-431
    • /
    • 2021
  • Construction of retaining walls with geocell has been gaining in popularity because of its easy and fast installation compared to conventional methods. In this study, model tests were conducted by constructing the geocell retaining wall (GRW) at a constant height (i.e., 90 cm) and using aggregate as an infill material at four different configurations and two different surface angles. In these tests, a circular footing was placed behind the walls at different lateral distances from the wall surface and loaded monotonically. Subsequent to this vertical loading being applied to the footing, horizontal displacements on the GRW surface were measured at three different points. The performance of Type 4 GRW exceeded the other three types of GRW, with the highest lateral displacement occurring in Type 4 GRW at approximately 0.67 % of wall height. In addition, the results of these tests were compared with theoretical approaches widely accepted in the literature. The stress levels reached beneath the footing were found to be compatible with theoretical results.

A Comparative Study on the Game Experience of VR Horror Games and Side Scrolling Horror Games

  • Qi Yi;Jeanhun Chung
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.2
    • /
    • pp.415-420
    • /
    • 2023
  • Since 2017, the application of VR technology in the game field has become more and more extensive, and more and more scholars have conducted research on VR games, especially VR horror games. This article will conduct research on VR horror games and scrolling scroll games through comparative analysis, and believes that VR horror games are much stronger than side scrolling scrolling games in terms of immersion. However, due to its unique flat third-person perspective, completely different operation methods and the existence of 'the fourth wall in side-scrolling horror games, Players can clearly realize that they are in an absolutely safe environment, and that they are just manipulators of game characters, not experiencers of terrorist events, so players will not receive excessive fright. Therefore, this article believes that the number of players who like side-scrolling horror games with certain horror elements is greater than the number of players who like pure VR horror games.Many traditional games in this paper have their own advantages in many aspects. For example, many traditional games such as horizontal games also have good development prospects in the future. We should promote the research on games in the academic community from multiple angles, not limited to popular VR games.

Predicting the lateral displacement of tall buildings using an LSTM-based deep learning approach

  • Bubryur Kim;K.R. Sri Preethaa;Zengshun Chen;Yuvaraj Natarajan;Gitanjali Wadhwa;Hong Min Lee
    • Wind and Structures
    • /
    • v.36 no.6
    • /
    • pp.379-392
    • /
    • 2023
  • Structural health monitoring is used to ensure the well-being of civil structures by detecting damage and estimating deterioration. Wind flow applies external loads to high-rise buildings, with the horizontal force component of the wind causing structural displacements in high-rise buildings. This study proposes a deep learning-based predictive model for measuring lateral displacement response in high-rise buildings. The proposed long short-term memory model functions as a sequence generator to generate displacements on building floors depending on the displacement statistics collected on the top floor. The model was trained with wind-induced displacement data for the top floor of a high-rise building as input. The outcomes demonstrate that the model can forecast wind-induced displacement on the remaining floors of a building. Further, displacement was predicted for each floor of the high-rise buildings at wind flow angles of 0° and 45°. The proposed model accurately predicted a high-rise building model's story drift and lateral displacement. The outcomes of this proposed work are anticipated to serve as a guide for assessing the overall lateral displacement of high-rise buildings.

Seismic behavior of the shallow clayey basins subjected to obliquely incident wave

  • Khanbabazadeh, Hadi;Iyisan, Recep;Ozaslan, Bilal
    • Geomechanics and Engineering
    • /
    • v.31 no.2
    • /
    • pp.183-195
    • /
    • 2022
  • Under the effects of the near-field earthquakes, the incident angle of the incoming wave could be different. In this study, the influences of some parameters such as incident angle, basin edge, peak ground acceleration level of the bedrock motion as well as different clay types with different consistency on the amplification behavior of the shallow basins are investigated. To attain this goal, the numerical analyses of the basins filled with three different clay types are performed using a fully nonlinear method. The two dimensional models of the basins are subjected to a set of strong ground motions with different peak ground acceleration levels and three different incident angles of 30◦, 45◦ and 90◦ with respect to the horizontal axes. The results show the dominant effect of the obliquely subjected waves at most cases. The higher effect of the 45◦ incident angle on the basin response was concluded. In the other part of this study, the spectral amplification curves of the surface points were compared. It was seen that the maximum spectral amplification of different surface points occurs at different periods. Also, it is affected by the increase in the peak acceleration level of the incoming motions.

Upper Body Type of Women with Large Busts (가슴이 큰 여성의 상반신 체형 유형)

  • Sujoung Cha
    • Journal of Fashion Business
    • /
    • v.27 no.5
    • /
    • pp.26-43
    • /
    • 2023
  • This study sought to typify and characterize the upper body shape of women with large breasts by classifying only Korean adult women aged 20-69 years whose difference dimension between bust and underbust circumference was 12.5 cm or greater. This study attempted to provide necessary information for the development of upper body clothing for women with large busts. Upper body horizontal, upper body height, shoulder size, upper body length, and shoulder slop factor were extracted to constitute upper body shapes of women with large busts. Upper body shapes of women with large busts were classified into four types: low obese upper body tall body type, high normal upper body short body type, drooping shoulders slender upper body tall body type, and broad shoulders slender upper body short body type. Upper body proportions of women with and without large busts were analyzed as follows. Women with large breasts had narrower shoulder width compared to bust width and waist width. Their underbust and waist circumferences were larger than their bust circumferences. For the development of tops for women with large busts, bodice pattern development was required, taking into account shoulder width, chest, and upper body length. Future studies should focus on angles of busts in more detail. Research should be conducted on the development of bodice by upper body type of women with large busts analyzed.