• Title/Summary/Keyword: horizontal and vertical root

Search Result 87, Processing Time 0.025 seconds

Seismic Qualification Analysis of a Small Savonius Style Vertical Axis Wind Turbine (소형 사보니우스형 수직축 풍력발전기의 내진검증)

  • Choi, Young-Hyu;Kang, Min-Gyu;Park, Sung-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.122-129
    • /
    • 2018
  • This study conducted a seismic qualification analysis of small savonius style vertical axis wind turbine(VAWT) using finite element method(FEM). The modal analysis was performed on the wind turbine structure to check the occurrence of resonance caused by the rotation of gearbox and windmill blades. Next, it conducted a seismic response spectrum analysis due to horizontal and vertical seismic load of required response spectrum of safe shutdown earthquake with 5 % damping(RRS/SSE 5%) of KS C IEC 61400 and conducted a static analysis due to deadweight and wind load. The total maximum stress of the VAWT structure was calculated by adding the maximum stresses due to each load case using the square root of the sum of the squares(SRSS) method. Finally, the structural safety of the VAWT structure was verified by comparing the total maximum stress and the allowable stress.

2-Dimensional Moisture Migration Modeling in Drip-Irrigated Root Zone (점적관개(點滴灌漑)에서 토양수분 이동 현상에 대한 2차원 모델 개발 연구)

  • Ro, Hee-Myong;Kim, Seung-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.4
    • /
    • pp.314-327
    • /
    • 1997
  • A 2-dimensional soil water flow model was developed to describe the migration of soil moisture in drip-irrigated root zone employing cylindrical coordinate system. Several natural phenomena were incorporated into the model such as transpiration, various types of evaporation, and ponding due to the increase in irrigation rate. Model was solved numerically by finite difference method. The model was verified in several ways leading to the conclusion that it can describe the soil moisture migration in drip-irrigated root zone fairly well. From sensitivity analysis, vertical migration of soil moisture was found to move faster than the horizontal one, which indicates the vertical location just under the dripping point are adequate for measuring points of soil moisture. The pot shape of soil moisture in irrigated zone was proved to be caused by evaporation at the soil surface. Also, it was found that the hydraulic conductivity has greatly influential to the soil moisture migration, and that the soil moisture continues to migrate vertically after irrigation stops.

  • PDF

A Study on Technique for Image Quality Enhancement to Maximize Container Inspection Efficiency (컨테이너 검사 효율 극대화를 위한 화질 향상 기법 연구)

  • Lee, Chang-Ho;Shin, Ji-Hye;Kim, Jang-Oh;Jung, Young-Jin;Min, Byung-In
    • Journal of radiological science and technology
    • /
    • v.40 no.4
    • /
    • pp.639-646
    • /
    • 2017
  • The purpose of this study is to present the algorithm to minimize the image noise caused by deterioration of high X-ray container inspection equipment and the faulty detection sensors, and to improvement quality of the container inspection images using MATLAB Toolbox. The daily checking images for the container inspection were used with the subject images and the noise caused by the horizontal and vertical images was evaluated with Root Mean Square (RMS) method, which is the most basic evaluation method of digital radiation image. Also, quality of the improved images was evaluated compared to quality of the orignal images. As a result, all RMS value of the improved images was lower then the original images by a mean of 13.5% in the horizontal images and 18.2% in the vertical images respectively. Also so did RMS value of the improved container images, by a mean of 13.4% in the horizontal images and 19.1% in the vertical images respectively. These findings can be verified objectively and visually and they would help the reading process of the container images be effective in Korea Customs Service.

A PHOTOELASTIC STUDY OF THE STRESS DISTRIBUTION IN BONE BY THE TRANSPALATAL LINGUAL ARCH (TRANSPALATAL LINGUAL ARCH에 의한 골내 응력 분포에 관한 광탄성적 연구)

  • Ko, Ki-Young;Tae, Ki-Chul;Kook, Yoon-Ah;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.27 no.5 s.64
    • /
    • pp.711-721
    • /
    • 1997
  • The purpose of this study was to investigate the stress distribution and intensity derived from the transpalatal lingual arch in the investing bone composed of photoelastic material(PL-3). The transpalatal lingual arch wire was deflected in the horizontal and vertical direction to give the various conditions. The two-dimensional photoelastic stress analysis was performed, and the stress distrebution was recored by photography The results were as follows: 1. In bilateral expansion, as horizontal deflection was singly applied, the stress was more concentrated on the root apex in square free end than round. In square free end, as vertical deflection was increased gradually, the black line meaning center of rotation moved inferiorly together with the increment of whole fringes. 2. In application of vertical deflection on anchorage side for unilateral expansion, the stress distribution that expansive force leaned to expansion side was observed. As vortical deflection increased, the extruding stress was observed on molar of expansion side. And as horizontal deflection increased, the tipping stress on the molar of anchorage side was observed. 3. In unilateral rotation with the asymmetric toe-in, the fringe appeared on the distal aspect of root apex.

  • PDF

SOFT TISSUE PROFILE CHANGE PREDICTION IN MAXILLARY INCISOR RETRACTION BASED ON CEPHALOMETRICS (두부방사선 분석에 의한 상악전치부 후방이동시 연조직 변화 예측에 대한 연구)

  • Choi, Jin-Hee;Lee, Jin-Woo;Cha, Kyung-Suk
    • The korean journal of orthodontics
    • /
    • v.27 no.1
    • /
    • pp.65-78
    • /
    • 1997
  • This study was carried out in order to determine soft tissue response to incisor movement and mandibular repositioning and to determine feasibility of predicting vertical and horizontal changes in soft tissue with hard tissue movement. For this study, cephalometric records of 41 orthodontically treated adult females who had Angle's Class II division 1 malocclusion were selected and stepwise multiple regression analysis was employed. Following conclusions were obtained by analysing the changes of soft tissue and hard tissue before and after treatment. 1. Hard tissue measurements that showed significant changes before and after treatment were horizontal and angular changes of maxillary incisor, horizontal,vertical and angular changes of mandibular incisor, overjet, overbite, interincisal angle, mandibular repositioning, A,B, skeletal convexity and soft tissue measurements that showed significant changes were horizontal, thickness and angular changes of upper lip, horizontal and angular changes of lower lip, interlabial angle, nasolabial angle labiomental angle, Sri, Ss, Si and soft tissue convexity(P<0.05). 2. All Soft tissue measurements changed significantly before and after treatment had between one and four hard tissue independent variables at statistically significant level, indicating that all soft tissue changes were direct relationship with hard tissue changes 3. Ova jet, horizontal change of maxillary incisor, horizontal change of maxillary root apex and horizontal change of pogonion entered into prediction equations most frequentely indicating that they were more significant variables in prediction of vertical and horizontal changes in the soft tissue with treatment, but vertical changes of mandibular incisor not entered any prediction equations, indicating that it was not considered a good predictor for soft tissue changes with maxillary incisor retraction. 4. Horizontal and vertical changes in subnasale were found to have most independent variables, significant at the 0.05 level in prediction-equations(${\Delta}$Sn(H):Ur, Is(H), Pg(H), UIA,${\Delta}$Sn(V): Is(H), Pg(H), overjet, A), indicating that subnasale changes are influenced by complex hard tissue interaction. 5. Multiple correlation coefficient($R^2$) of the soft tissue prediction equations ranges from 0.2-0.6.

  • PDF

A STUDY ON THE STRESS ANALYSIS OF THREE ROOT-FORM IMPLANTS WITH FNITE ELEMENT ANALYSIS (유한요소분석법을 이용한 치근형 임플랜트의 응력분포에 관한 연구)

  • Moon, Byoung-Hwa;Yang, Jae-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.1
    • /
    • pp.129-150
    • /
    • 1993
  • Since the restoration or masticatory function is the most important aim of implants, it should be substituted for the role of natural teeth and deliver the stress to the bone under the continous load during function. In natural teeth, stress distribution can be obtained through enamel, dentin and cementum and the elasticity of the periodontal ligament play a role of buffering action. In contrast, implant prosthesis has a very unique characteristics that it delvers the load directly to bone through the implant and superstructure. This fact arise the needs to evaluate the stress distribution of the implant in the mechnical aspects, which has a similar role of natural teeth but different pathway of stress. With 3 kinds of implant in prevalent use, 2 types of experimental PEA implant models were made, axisymmetric and 2-dimensional type. In axisymmetric model, the stiffness of the part including the prosthesis and implant which extrude out of bony surface could be calculated with displacement of the superstructure un er 100N vertical load and then damping effects could be determined through this stiffness. In axisymmetric FEA model, load to the bone could be deduced by evaluation the stress distribution of the designed surface under the 100N vertical force and in 2-dimensional model, 100N eccentric vertical load and 20N horizontal loda. The result are as follows. 1. In every implant, stress to the bone tends to be concenturated on the cortical bone. 2. Though the stress of the cancellous bone is larger at the apex of implants, it is less compared with cortical bone. 3. Under 20N horizontal load, stress of the left and right sides of implant shows a symmetrical pattern. But under 100N eccentric vertical load, loaded side shows much larger stress value. 4. In the 1mm interface, stress distribution among implants tend to have a similar pattern. But under 20N horizontal load apposite side of being loaded shows less stress in IMZ. 5. In the case of screw type implant, stress tends to vary along with screw shape. 6. According to the result determined with microstrain, cancellous bone id generally under the condition of overload, while cortical bone is usually within the limitation of physiologic load. 7. In the Branemark implant, maximum stress to the cortical bone is larger than any other implant except for the condition of 20N horizontal force and 0.05mm interface. 8. Damping effects of implants is maximum in IMZ.

  • PDF

Effective Reduction of Horizontal Error in Laser Scanning Information by Strip-Wise Least Squares Adjustments

  • Lee, Byoung-Kil;Yu, Ki-Yun;Pyeon, Moo-Wook
    • ETRI Journal
    • /
    • v.25 no.2
    • /
    • pp.109-120
    • /
    • 2003
  • Though the airborne laser scanning (ALS) technique is becoming more popular in many applications, horizontal accuracy of points scanned by the ALS is not yet satisfactory when compared with the accuracy achieved for vertical positions. One of the major reasons is the drift that occurs in the inertial measurement unit (IMU) during the scanning. This paper presents an algorithm that adjusts for the error that is introduced mainly by the drift of the IMU that renders systematic differences between strips on the same area. For this, we set up an observation equation for strip-wise adjustments and completed it with tie point and control point coordinates derived from the scanned strips and information from aerial photos. To effectively capture the tie points, we developed a set of procedures that constructs a digital surface model (DSM) with breaklines and then performed feature-based matching on strips resulting in a set of reliable tie points. Solving the observation equations by the least squares method produced a set of affine transformation equations with 6 parameters that we used to transform the strips for adjusting the horizontal error. Experimental results after evaluation of the accuracy showed a root mean squared error (RMSE) of the adjusted strip points of 0.27 m, which is significant considering the RMSE before adjustment was 0.77 m.

  • PDF

The Effect Of Platelet - Derived Growth Factor And Insulin - Like Growth Factor On The Guided Tissue Regeneration In The Treatment Of Human Furcation Involvement (Platelet - derived growth factor-BB와 Insulin Iike gowth factor-1이 e- PTFE를 이용한 치근 이개부의 조직유도재생에 미치는 영향)

  • Ju, Ae-Ra;Kim, Sung-Jo;Choi, Jeom-Il
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.1
    • /
    • pp.80-88
    • /
    • 1996
  • The aim of the present investigation was to see the effect of combined use of PDGF BB and IGF -1 on the guided tissue regeneration(GTR) using barrier membrane in the treatment of human furcation involvement. Twelve patients with initially diagnosed as having moderate to advanced adult periodontitis with mandibular class II buccal furcation defects have been wer selected. Initial scaling and root planing has been performed and baseline data consisting of probing depths and attachment levels have been recorded prior to surgical procedures. The GTR procedures using either barrier membrane(control : ePTFE) alone or together with the application of PDGF - BB and IGF -l(experimental : ePTFE+PDGF/IGF) have been done under the routine guidelines. During the surgery, the distance from CEJ either to the bottom of the bone defects(CEJ - BD) or to the bone crest(CEJ-BC) were measured. Horizontal distance to the deepest area in the furcal defects were measured from the reference line connection the most prominent bony walls of the two buccal roots. 6 months following the GTR therapy, all the measurements were made repeatedly. The probing attachment gain of the experimental and the control grous were 2.14mm and l.07mm, respectively with no statically significnant difference. Amont of vertical bone fill in the experimental and the control groups were 2.43mm and 2.29mm, rexpectively. Amonut of horizontal bone fill were 2.86mm in the experimental group and 2.17mm in the control group, respectively. However, there were no significant differences in the amount of bone fill(both vertical and horizontal)between the two groups.

  • PDF

Assessment of apical root resorption using digital subtraction radiography (디지털공제방사선촬영술을 이용한 치근단 흡수의 평가)

  • Heo Min-Suk;Lee Sam-Sun;Lee Kyung-Hee;Choi Hang-Moon;Choi Soon-Chul;Park Tae-Won
    • Imaging Science in Dentistry
    • /
    • v.31 no.1
    • /
    • pp.51-55
    • /
    • 2001
  • Purpose : This study was performed to compare the diagnostic ability of conventional intraoral radiographs with that of digital subtraction image and to assess the quantifying ability of digital subtraction image for simulated apical root resorption Materials and Methods : Conventional intraoral radiographs and digital images of ten sound maxillary central incisors and those with simulated apical root resorption were taken with varying horizontal and vertical angulations of the x-ray beam. The diagnostic accuracy to detect the lesion was evaluated on conventional intraoral radiographs and digital subtraction images by ROC analysis. The amount of simulated apical root resorption was also estimated on the reconstruction images by Emago/sup (R)/ and compared with actual amount of tooth loss using paired t-test. Results: The diagnostic accuracy of conventional intraoral radiographs to detect the apical root resorption was low (ROC area = 0.6446), and the sensitivity and the specificity of digital subtraction images were 100%, respectively. The calculated amounts of apical root resorption showed no statistically significant difference with the actual amounts of the lesion (p>0.05). Conclusion: Digital subtraction radiography is powerful tool to detect the small apical root resorption, and quantitative analysis of small amounts of the lesion can be evaluated by digital subtraction radiography.

  • PDF

The influence of age, sex, and tooth type on the anatomical relationship between tooth roots and the mandibular canal

  • Pucilo, Michal;Pucilo, Aleksandra;Safranow, Krzysztof;Nowicka, Alicja
    • Imaging Science in Dentistry
    • /
    • v.51 no.4
    • /
    • pp.373-382
    • /
    • 2021
  • Purpose: Cone-beam computed tomography (CBCT) reconstructions were analysed to elucidate factors affecting the anatomical relationship between tooth roots and the mandibular canal(MC). Materials and Methods: Images of 300 volumetric tomography scans of patients aged between 20 and 79 years old (167 women and 133 men) were analysed. The mean distances between 2,053 dental root apices and the internal border of the MC were obtained by measuring the horizontal and vertical distances on coronal CBCT images. The actual distance was then calculated mathematically with the Pythagorean formula. The statistical significance of differences between men and women was assessed using the Mann-Whitney test. Correlations with patient age were evaluated with the Spearman rank correlation coefficient. Results: The mean distances ranged from 2.17 mm, for single right third molar roots in women, to 8.02 mm for single left third molar mesiolingual roots in men. The mean distances measured for the mandibular right second molar mesial roots and the right second premolar roots were larger in men than in women. Age showed a significant positive correlation with the measured distances for mesial and distal roots of the first and second molar on both sides and the right third molar, mesiolingual roots of the left third molar, and single roots of the right third molar. Conclusion: The root-to-mandibular canal distance depended on age and the type of tooth. In 2 root types, this distance was impacted by sex.