• Title/Summary/Keyword: hoop

Search Result 342, Processing Time 0.027 seconds

현대패션에 응용된 후프(Hoop)에 관한 연구

  • 정경희;배수정
    • Proceedings of the SOHE Conference
    • /
    • 2003.10a
    • /
    • pp.77-77
    • /
    • 2003
  • 본 연구의 목적은 후프(hoop)의 기원 및 변천과정을 고찰해보고 시대별로 후프의 유형을 분류한 후, 포스트모더니즘 이후 더욱 다양해진 후프가 현대패션에서 어떻게 응용되고 있는지를 살펴봄으로써 후프의 역사적ㆍ미적 가치를 재인식하여 오늘날 복식디자인에 창조의 영감을 줄 수 있는 하나의 모티브를 제시하는데 있다. 후프가 발생하였던 르네상스시대에는 신 중심에서 인간중심으로 사고가 변화하면서, 복식에 있어서도 인간의 신체미를 과시하려는 의도로 인체의 실루엣을 과장ㆍ확대하고자 하였다. 따라서 속옷의 중요성과 역할에 따른 심미적인 기능이 복식에 절대적으로 필요하였고, 뿐만 아니라 기교적인 면에서 속옷에 요구되는 장식성은 어느 시대보다 절실하였다. 그 결과 겉옷이 확대되고, 이에 따라 속옷도 인체를 크게 보일 수 있는 후프가 고안되었다. 후프는 스커트를 부풀리기 위해 철사나 고래뼈 등을 세공하여 만든 테를 넣은 속치마를 말한다. 16세기 중엽 스페인에서 유행한 종형의 파딩게일(farthingale)을 시초로, 영국과 프랑스에서는 드럼형의 휠 파딩게일(wheel farthingale)과 오쓰뀌(hausse col)가 유행하였다. 17세기 초기에는 후프를 착용한 16세기 복식이 유행하였으나, 1625년 이후 슬림한 스타일의 17세기 복식이 유행하자 후프의 착용은 점차 쇠퇴하였다. 18세기에는 파니에(panier)가 유행하여 옆을 부풀린 스커트의 실루엣을 형성하였고, 19세기에는 크리놀린(crinoline), 벗슬(bustle)이 유행하였다.

  • PDF

The Behaviors of the Material Parameters Affecting PCI Induced-Fuel Failure (핵연료봉의 PCI파손에 영향을 미치는 인자들의 거동분석)

  • Sim, Ki-Seob;Woan Hwang;Sohn, Dong-Seong;Suk, Ho-Chun
    • Nuclear Engineering and Technology
    • /
    • v.20 no.4
    • /
    • pp.241-245
    • /
    • 1988
  • It is very important to investigate the behaviors of the material parameters governing PCI fuel failure during power ramp because PCI fuel failure is considered to be related to the operations limits of power reactors. In this study, the behavior characteristics of the material parameters such as hoop stress, hoop strain, ridge height, creep strain rate and strain energy in cladding were studied as a function of the operating parameters such as power shock and ramp rate. The FEMAXI-IV fuel rod performance analysis code was used for this study.

  • PDF

A Study for Mitigating Residual Stress in CRDM Penetration Nozzle Weld (제어봉구동장치 관통노즐 용접부의 잔류응력 완화를 위한 연구)

  • Lee, Seung-Gun;Kim, Jong-Sung;Jin, Tae-Eun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.90-95
    • /
    • 2004
  • In this study, we proposed new method to mitigate tensile welding residual stress for preventing PWSCC in CRDM nozzle. Residual stress analysis using finite element method is performed to confirm benefit of the new method. In case of applying existing method, tensile axial residual stress decrease by about 28% and tensile hoop residual stress decrease by about 33%. In case of applying the new method, tensile axial residual stress decrease by about 32% and tensile hoop residual stress decrease by about 43%. Therefore, we conclude the new proposed method is more effective to prevent PWSCC than existing method.

  • PDF

Analysis of Residual and Applied Stresses of Thin-walled U tubes (얇은 두께로 된 U 전열관의 잔류응력 및 부하응력 해석)

  • 김우곤;김대환;류우석;국일현;김성청
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.163-169
    • /
    • 1999
  • Residual stresses causing stress corrosion cracking (SCC) of thin-walled steam generator U tubes were investigated. The residual stresses were measured by hole drilling methods, and the applied stresses resulting from the internal pressure and the temperature gradient in the steam generator were estimated theoretically. In U-bent regions, the residual stresses at extrados were induced with compressive stress(-), and its maximum value reached -319MPa in axial direction at $\phi$= $0^{\circ}$ in position. Maximum tensile residual stress of 170MPa was found to be at the flank side at position of $\phi$= $90^{\circ}$, i.e., at apex region. Hoop stress due to the pressure and temperature differences between primary and secondary side were analyzed to be 76 MPa and 45 MPa, respectively.

  • PDF

An Analysis of Elastic Wave Propagation in Multilayered Media (다층구조물내의 탄성파 전파해석)

  • 김현실
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.143-150
    • /
    • 1999
  • Elastic wave propagation in a multilayered elastic half-plane is studied by using the Cagniard-de Hoop method. After the unknowns are expressed in terms of the reflection and transmission coefficients in the in terms of the reflection and transmission coefficients in the integral-transformed domains they are assmbled to form the global matrix equation. The inverse Laplace transform of each term is done by applying the Cagniard-de Hoop methods. As a numerical example a four-layered half-plane is considered where a point source is applied to the first layer. The method described in the present study can be used in checking other numerical methods such as FDM.

  • PDF

FRAPCON analysis of cladding performance during dry storage operations

  • Richmond, David J.;Geelhood, Kenneth J.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.2
    • /
    • pp.306-312
    • /
    • 2018
  • There is an increasing need in the United States and around the world to move used nuclear fuel from wet storage in fuel pools to dry storage in casks stored at independent spent fuel storage installations or interim storage sites. Under normal conditions, the Nuclear Regulatory Commission limits cladding temperature to $400^{\circ}C$ for high-burnup (>45 GWd/mtU) fuel, with higher temperatures allowed for low-burnup fuel. An analysis was conducted with FRAPCON-4.0 on three modern fuel designs with three representative used nuclear fuel storage temperature profiles that peaked at $400^{\circ}C$. Results were representative of the majority of US light water reactor fuel. They conservatively showed that hoop stress remains below 90 MPa at the licensing temperature limit. Results also show that the limiting case for hoop stress may not be at the highest rod internal pressure in all cases but will be related to the axial temperature and oxidation profiles of the rods at the end of life and in storage.

Seismic Behavior of Nonseismically Detailed Reinforced Concrete Beam-Column Joints (비내진 상세를 가진 RC 보-기둥 접합부의 거동)

  • 이한선;우성우
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.133-140
    • /
    • 2003
  • The objective of this study is to clarify the seismic capacity and the characteristics in the hysteretic behavior of RC structures with non-seismic detailing. Interior and exterior beam-column subassemblages were selected from a ten-story RC building and six 1/3-scale specimens were constructed with three variables; (1) with and without slab, (2) with and without hoop bars in the Joint region, (3) upward and downward direction of anchorage for the bottom bar in beams of exterior beam-column subassemblage. The test results have shown; (1) in case of interior beam-column subassemblage, there is no almost difference between nonseismic and seismic details in the strength and ductility capacity; (2) the Korean practice of anchorage (downward and 25 $d_{b}$ anchorage length) in the exterior Joint caused the 10%~20% reduction of strength and 27% reduction of ductility iii comparison with tile case of seismic details; and the existence of hoop bars in the joint region shows no effect in shear strain.n.

  • PDF

Combination of Anterior and Posterior Subcutaneous Internal Fixation for Unstable Pelvic Ring Injuries: The "Hula Hoop Technique"

  • Balbachevsky, Daniel;Pires, Robinson Esteves;Sabongi, Rodrigo Guerra;Lins, Theophilo Asfora;Carvalho, Geiser de Souza;Fernandes, Helio Jorge Alvachian;Reis, Fernando Baldy dos
    • Journal of Trauma and Injury
    • /
    • v.32 no.1
    • /
    • pp.51-59
    • /
    • 2019
  • Unstable pelvic ring lesions are usually treated with internal fixation. In patients presenting clinical instability or soft tissue complication risk, external fixation is a safe treatment option. However, pin tract infection, insufficient biomechanical properties, difficulty sitting and changing decubitus are important drawbacks related to the treatment. The present study reports the association of anterior and posterior subcutaneous internal fixation by applying spine-designed implants on the pelvic ring disruption: supra-acetabular pedicle screws with an interconnecting rod (Infix), plus posterior transiliac fixation with the same system, which the authors have named the "Hula Hoop Technique".

Cyclic Behavior of Existing RC Columns with Non-Seismic Details (비내진상세를 가진 기존 RC 기둥의 반복거동 평가)

  • Choi, Myeong-Ho;Kim, Young-Chan;Lee, Chang-Hwan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.237-238
    • /
    • 2022
  • The seismic performance of existing reinforced concrete (RC) elements to which seismic design was not applied is questionable. To evaluate the behavior of existing RC columns, column specimens with widely spaced transverse reinforcement and 90-degree hoop anchor hooks as variables were designed. Experimental tests were performed by applying a fixed low axial load and increasing lateral cyclic loads to the specimens. As a result, the hoop spacing and anchor hook angle did not significantly affect the load-displacement relationship and the dissipated energy before failure.

  • PDF

Relocation of plastic hinge in exterior beam-column joints using inclined bars

  • P.Asha;R.Sundararajan;K.Kumar
    • Earthquakes and Structures
    • /
    • v.27 no.4
    • /
    • pp.317-329
    • /
    • 2024
  • Recent earthquakes have demonstrated that even when the beams and columns in a reinforced concrete frame remain intact, the integrity of the whole structure is undermined if the joint where these members connect fails. A good seismic performance of reinforced concrete frames depends on their ability to absorb seismic energy through inelastic deformations and to avoid a sudden development of collapse mechanism in event of a strong earthquake shaking. The primary objective of this investigation is to move the plastic hinge away from the beam-column joint region and hence reducing the damage to the joint region. In this research, the seismic performance of exterior beam-column joints with four types of confinement in joint region and inclined bars from column to beam is investigated experimentally. Control specimens without inclined bars and four types of confinement Square Hoop, Square Spiral, Circular Hoop and Circular Spiral were tested along with inclined bars were tested. Seismic performance was determined via load-deflection response, ductility, stiffness, energy dissipation, strain of beam reinforcement and crack pattern. Out of the four specimens with inclined bars, seismic performance of joint with Square Spiral confinement gave the best performance in terms of all parameters.