• Title/Summary/Keyword: homotopies

Search Result 3, Processing Time 0.019 seconds

On the Envelopes of Homotopies

  • Choyy, Jae-Yoo;Chu, Hahng-Yun
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.3
    • /
    • pp.573-582
    • /
    • 2009
  • This paper is indented to explain a dynamics on homotopies on the compact metric space, by the envelopes of homotopies. It generalizes the notion of not only the envelopes of maps in discrete geometry ([3]), but the envelopes of flows in continuous geometry ([5]). Certain distinctions among the homotopy geometry, the ow geometry and the discrete geometry will be illustrated. In particular, it is shown that any ${\omega}$-limit set, as well as any attractor, for an envelope of homotopies is an empty set (provided the homotopies that we treat are not trivial), whereas it is nonempty in general in discrete case.

REMARKS ON HOMOTOPIES ASSOCIATED WITH KHALIMSKY TOPOLOGY

  • HAN, SANG-EON;LEE, SIK
    • Honam Mathematical Journal
    • /
    • v.37 no.4
    • /
    • pp.577-593
    • /
    • 2015
  • Several kinds of homotopies have been substantially used to study topological properties of digital spaces. The present paper, as a survey article, studies some recent results in the field of homotopy theory associated with Khalimsky topology. In particular, Khalimsky topological properties of digital products related to the establishment of the homotopies are mainly treated.

FLOER MINI-MAX THEORY, THE CERF DIAGRAM, AND THE SPECTRAL INVARIANTS

  • Oh, Yong-Geun
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.2
    • /
    • pp.363-447
    • /
    • 2009
  • The author previously defined the spectral invariants, denoted by $\rho(H;\;a)$, of a Hamiltonian function H as the mini-max value of the action functional ${\cal{A}}_H$ over the Novikov Floer cycles in the Floer homology class dual to the quantum cohomology class a. The spectrality axiom of the invariant $\rho(H;\;a)$ states that the mini-max value is a critical value of the action functional ${\cal{A}}_H$. The main purpose of the present paper is to prove this axiom for nondegenerate Hamiltonian functions in irrational symplectic manifolds (M, $\omega$). We also prove that the spectral invariant function ${\rho}_a$ : $H\;{\mapsto}\;\rho(H;\;a)$ can be pushed down to a continuous function defined on the universal (${\acute{e}}tale$) covering space $\widetilde{HAM}$(M, $\omega$) of the group Ham((M, $\omega$) of Hamiltonian diffeomorphisms on general (M, $\omega$). For a certain generic homotopy, which we call a Cerf homotopy ${\cal{H}}\;=\;\{H^s\}_{0{\leq}s{\leq}1}$ of Hamiltonians, the function ${\rho}_a\;{\circ}\;{\cal{H}}$ : $s\;{\mapsto}\;{\rho}(H^s;\;a)$ is piecewise smooth away from a countable subset of [0, 1] for each non-zero quantum cohomology class a. The proof of this nondegenerate spectrality relies on several new ingredients in the chain level Floer theory, which have their own independent interest: a structure theorem on the Cerf bifurcation diagram of the critical values of the action functionals associated to a generic one-parameter family of Hamiltonian functions, a general structure theorem and the handle sliding lemma of Novikov Floer cycles over such a family and a family version of new transversality statements involving the Floer chain map, and many others. We call this chain level Floer theory as a whole the Floer mini-max theory.