
KYUNGPOOK Math. J. 49(2009), 573-582

On the Envelopes of Homotopies

Jaeyoo Choy†

Department of Mathematics, Kyungpook National University, Sankyuk-dong, Buk-
gu, Daegu 702-701, Republic of Korea
e-mail : choy@knu.ac.kr

Hahng-Yun Chu∗

School of Mathematics, Korea Institute for Advanced Study, Cheongnyangni 2-dong,
Dongdaemun-gu, Seoul 130-722, Republic of Korea
e-mail : hychu@kias.re.kr

Abstract. This paper is indented to explain a dynamics on homotopies on the compact

metric space, by the envelopes of homotopies. It generalizes the notion of not only the

envelopes of maps in discrete geometry ([3]), but the envelopes of flows in continuous

geometry ([5]). Certain distinctions among the homotopy geometry, the flow geometry

and the discrete geometry will be illustrated. In particular, it is shown that any ω-limit

set, as well as any attractor, for an envelope of homotopies is an empty set (provided the

homotopies that we treat are not trivial), whereas it is nonempty in general in discrete

case.

1. Introduction

The purpose of this paper is to explain the dynamics of homotopies on a compact
metric space. Classically, following the work of Auslander-Kolyada-Snoha[3], the
phase space S(X) is the semigroup of continuous self-maps on X. If one fixes a self-
map f on X, then we have the classical dynamical system (X, f) and the functional
envelope (S(X), Ff ), where Ff is a self-map (continuous with respect to the uniform
metric) on S(X) by

Ff (g) = f ◦ g.

The functional envelope of the classical dynamical system was soon generalized by
the authors in [5]. Let γ be a continuous flow on X. If the phase space is F(X) the
set of all flows, then one might think (F(X), Fγ) as the induced envelope, where Fγ
is a continuous map from F(X)× R mapping a flow α to

(1.1) Fγ(α, t)(x, s) = γ(α(x, s), st).
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This definition is sufficiently canonical in the sense that if one puts f = γ(x, 1), g =
α(x, 1) then Fγ(α, n)(x, 1) = γ(α(x, 1), n) = fn ◦ g(x) = Fnf (g)(x) for n ∈ N, which
realizes the classical dynamical system and the functional envelope. However, in
contrast to the classical dynamical system (i.e., the functional dynamical systems),
one should be careful for that the target space of Fγ does not lie in F(X). Here is
where one considers the set of the homotopies (Definition 2.1). In [5], the authors
suggest two distinct ways of resolutions for this phenomenon, as follows:

(1) restrict F(X) to a maximal subset in which Fγ is well-defined;

(2) enlarge F(X) to a bigger set H(X) the set of homotopies on X.

For (1), by [5, Proposition 2.2], Fγ(X) the set of the flows commutative with γ, is
such a subset of F(X). A flow α on X is commutative with γ if

γ(α(x, s), t) = α(γ(x, t), s) for all s, t ∈ R.

As a result, we have Fγ : Fγ(X)×R→ Fγ(X) by the assignment in (1.1). Further-
more, by [5, Proposition 2.5], Fγ is a flow on Fγ(X). For (2), as was noted in [5,
Remark 6.6], the Fγ extends to H(X), which will be investigated in this paper.

Let us give an explanation on the motivation of our paper. One aspect, in a
most applicable viewpoint in the topological dynamics, is on ω-limit of dynamics.
The ω-limit sets, as an effective prober of topological dynamical structures, sit
in a significant in Dynamical Systems. In particular, these frequently provide a
rather precise description the time behavior of given dynamical systems, as well as
a localization of the complexity.

Another aspect is on enveloping semigroup of dynamics. The theory for the
enveloping semigroup of a dynamical system, which was introduced by R. Ellis in
[8], is a kind of compactification theory of the acting group. It has turned out to
be a fundamental tool in the abstract theory of topological dynamical systems and
also to be extremely useful in the study of dynamical properties of transformation
groups. R. Ellis, thereafter, obtains series of valuable results concerning the theory
for the enveloping semigroup of a dynamical system including the applications to
the ergodic theory [11], the algebraic theory for the structure of projective flows [9]
and the recurrence theory for semigroup actions [10].

A third aspect, while the above two aspects arise purely from the Dynamics, is
on the homotopy theory and the Morse theory. Recall that, in [5], it was proven
that the set of flows F(X) does not admit a nonempty ω-limit set. It is closely
related to Sacks-Uhlenbeck’s bubbling[17], as an embedded disk need not have con-
vergent conformally embedded disks, but does those up to bubblings (but, in fact,
for the purpose, we use a different metric on a phase space, say a Sobolev met-
ric). This partly suggests what should be done in a near future; the convergence
will be studied modulo a certain “bubbling” phenomenon. In fact, such flavors
have been widely reflected in many geometry theories as the Donaldson theory on
the instanton moduli in 4-manifold topology(ref. [7]), the Floer theory on the rel-
ative Donaldson theory in 3-manifolds and the Lagrangian moduli in Symplectic
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topology(ref. [13]) and the Kodaira-Spencer theory on the deformation space in
Algebraic geometry(ref. [12]). In short, to have a proper meaning of convergence,
those theories adopted some sort of splitting (corresponding to the bubblings). A
very tiny note on this will be told in Remark 3.5.

A few more words, getting back to Dynamical systems, are added. In the
last few years, it is proceeded to describe some new connections between three
seemingly unrelated topics: the theory of enveloping semigroups, the theory of
chaotic behavior, and the representation theory of dynamical systems on Banach
spaces[14]. Various applications of enveloping semigroup of maps or flows have been
subsequently investigated by many authors. (see [1], [2], [5], [14], [19].)

Contents of the paper. In §3, we define the envelope (Fγ ,H(X)) of homotopies on
compact metric space and study basic properties of it.

In §4, we want to investigate the ω-limit sets of H(X). A quick observation
from [5, Theorem 3.4] is that a limit homotopy is far harder to exist than a limit
map does in case of functional envelope, because point-wise consideration is never
sufficient. Indeed, Theorem 4.7 certainly tells us the emptiness of the ω-limit sets
and the attractors.

In §5, some examples of the envelopes will be illustrated. These show the
distinctions among the envelopes of maps, flows and homotopies.

2. Preliminaries

We set up some notations. Let X be a compact metric space throughout the
paper.

Definition 2.1. A homotopy on X, here, is a continuous map β : X×R→ X such
that β(x, 0) = x for all x ∈ X.

The phase space of this paper’s interest is

H(X) = the set of homotopies on X.

Definition 2.2. LetX,Y be a compact metric space. A homotopy of a (continuous)
map f : X → Y (or an f -homotopy, sometimes referred as a relative homotopy) is
a continuous map βf : X × R → Y such that βf (x, 0) = f(x) for all x ∈ X. The
induced set of f homotopies is

Hf (X,Y ) = the set of f -homotopies from X to Y .

Thus, H(X) = HIdX (X,X). Further, without fixing f : X → Y , we may define

H(X,Y ) = the set of f -homotopies from X to Y for some f : X → Y .

Hence, we have a fibration H(X,Y ) → C(X,Y ) with the fibre Hf (X,Y ) at f ∈
C(X,Y ) where C(X,Y ) is the space of continuous maps from X to Y .
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Remark 2.3. A flow is a special case of homotopies as will be seen. Any map can
be seen as a homotopy if it is homotopic to an identity map. Therefore, the study on
H(X) amounts to the connected component of the set of continuous endomorphisms
on X.

Example 2.4. A flow on X is an example of homotopies, which is defined to be a
continuous map α : X × R→ X with the properties

(2.1) α(x, 0) = x, α(x, t1 + t2) = α(α(x, t1), t2)

for x ∈ X, t1, t2 ∈ R. Let us define

F(X) = the set of flows on X.

As was observed in Remark 2.3, a homotopy on X can be seen as a natural
generalization (especially in the dynamics) of both a flow and a map on X.

Definition 2.5. By a dynamical system (X, γ), we mean a pair of a compact metric
space X and a homotopy γ : X ×R→ X. The envelope of homotopies on (X, γ) is
the dynamical system (H(X), Fγ) where Fγ : H(X)× R→ H(X) is defined by

(Fγ(α, t))(x, s) = γ(α(x, s), st),

where x ∈ X and s, t ∈ R.

Definition 2.6. Given two continuous maps β1, β2 : X × R → X, the uniform
metric d(β1, β2) is defined as

d(β1, β2) = sup
x∈X,t∈R

dX(β1(x, t), β2(x, t)).

Remark 2.7. Indeed, the metric is well-defined since X is a compact space with
the metric dX . The uniform metric in Definition 2.6, defines the induced metric on
H(X). The compactness of X in Definition 2.1 is not merely indispensable, hence
we may define a homotopy on the non-compact space H(X). This can be viewed
as a canonical extension of the discrete case of [3] and the flow case of [5].

3. Envelopes of homotopies

In this section, we start the study of the dynamics of the envelopes of homo-
topies.

Proposition 3.1. (a) Let βf be an f -homotopy from X to Y . Then, this gives rise
to an induced homotopy from H(X) to H(X,Y ), by assigning (α, t) 7→ βf (·, t) ◦ α
where α ∈ H(X) and t ∈ R.
(b) Furthermore, if βf is an isotopy (i.e., βf (·, t) is a bi-continuous map from X to
Y ), then the induced homotopy from H(X) to H(X,Y ) is an isotopy.
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(c) With the assumption of (b) and γ ∈ H(X), we have equivalent envelopes in the
sense that

(3.1) H(X)× R
Fγ

//

��

H(X)

��

H(Y )× R
FγY // H(Y )

commutes, where FγY = f ◦ γ ◦ (f−1× IdR), the right vertical map sends α ∈ H(X)
to αY = f ◦ α ◦ (f−1 × IdR) and the left one is the obvious extension of α 7→ αY by
the identity on R.

Proof. The functorialities in the statements directly follow from the computations,
which we omit. �

As we can see in Definition 2.5 or in the upper horizontal map in (3.1),
Fγ : H(X) × R → H(X) is defined; further nicely, it is a homotopy on H(X)
as below. This enables the towering argument.

Proposition 3.2. The map Fγ is a homotopy on the phase space H(X). Further-
more, if γ is a flow on X, then Fγ is a flow on H(X).

Proof. For any homotopy α on X, we have Fγ(α, 0)(x, s) = γ(α(x, s), 0) = α(x, s).
Therefore, we obtain Fγ(α, 0) = α.

The continuity of Fγ comes from that if a sequence of homotopies αi converges
to α, then limi→∞ γ(αi(x, s), ts) = γ(α(x, s), ts) for any x ∈ X and t, s ∈ R.
Consequently Fγ : H(X)× R→ H(X) is a homotopy.

Finally, if γ is a flow, then we show Fγ(α, t1 + t2) = Fγ(Fγ(α, t1), t2). This
follows from the direct calculation γ(α(x, s), (t1+t2)s) = γ(γ(α(x, s), t1s), t2s) since
γ is a flow. �

Remark 3.3. Unfortunately, even if γ is flow on X, the image of F(X) ⊂ H(X)
under Fγ does not lie in F(X) again.

For the remedy of this, in [5], a phase space Fγ(X) is defined by the set of all
flows α on X with the commutative property

Fγ(X) = {α|γ(α(x, s), t) = α(γ(x, t), s) for all s, t ∈ R}.

Then, by [5, Proposition], Fγ can be restricted to Fγ : Fγ(X)× R→ Fγ(X).

Definition 3.4. In the same vein with the above remark, for any homotopy γ, one
can define

Hγ(X) = {α ∈ H(X)|γ(α(x, s), t) = α(γ(x, t), s) for all s, t ∈ R}.

For those γ, α, we call commutative homotopies. If γ is commutative with itself, γ
is called a self-commutative homotopy.
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Remark 3.5. Note that if γ is a flow, then it is obviously self-commutative. This
is where our model is similar to the deformation-obstruction theories in geometry,
e.g., the Donaldson theory (on the gauge theory[7]). A homotopy γ corresponds
to some local 1-form-valued matrix part A of a connection on a closed 4-manifold
with dA = 0, and the self-commutativity of γ corresponds to the unobstructed-ness
(to the local smoothness of the moduli of instantons) of A, i.e., [A,A] = 0. If B
denotes the corresponding 1-form-valued matrix (in a connection) corresponding to
a homotopy α, then [A,B] = 0 amounts to the commutativity of α, γ. This model,
in fact, is more suitable for the parallel theory (with ours) of the phase space of
homotopies X × I → X where I is the interval [0, 1]. It is because there is a
correlation between the addition of A and B and the composition of homotopies.
But, we shall not continue this subject here, since we are pursuing a generalization
of envelopes of flows in this paper.

Proposition 3.6. If γ is self-commutative and γ, α are commutative homotopies
on X, then the image Fγ(α, t) is an element of Hγ(X) for any t ∈ R. Hence, we
have the restriction Fγ : Hγ(X)× R→ Hγ(X) for a self-commutative homotopy.

Proof. We have to show Fγ(α, t) ∈ Hγ(X), i.e., the commutativity

γ(Fγ(α, t)(x, s), τ) = Fγ(α, t)(γ(x, τ), s)

should be satisfied. By direct calculation, we have

γ(Fγ(α, t)(x, s), τ) = γ(γ(α(x, s), st), τ)

and

Fγ(γ(α, t)(x, τ), s) = γ(α(γ(x, τ), s), st)

= γ(γ(α(x, s), τ), st).

Since γ(γ(α(x, s), st), τ) = γ(γ(α(x, s), τ), st) by the self-commutativity of γ, the
proof is completed. �

Remark 3.7. Note that H(X), as well as Hγ(X),F(X) and Fγ(X), is a complete
metric space (with respect to the uniform metric) whenever X is a complete metric
space. In the next section, we will see any sequence Fγ(α, n) (n ∈ Z+) cannot be a
Cauchy sequence, unless γ is a trivial homotopy.

4. Some dynamical properties for Fγ in the envelope

The envelope of homotopies (Hγ(X), Fγ) has properties parallel to the func-
tional envelope of [3, §4] and (Fγ(X), Fγ), concerning the theories related to orbit
closures, ω-limits, etc. However, as was shown in [5, §3] in case (Fγ(X), Fγ), while
the ω-limit in the functional envelope, if any, results from point-wise convergence,
the ω-limit in our envelope is not enough to consider the point-wise convergence.
The main theorem in this section proves that the ω-limit set of Fγ is an empty set.
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The theorem may look very similar to [5, Theorem 3.4]. A point that one
should be cautious, is that the convergence used in this paper strictly enlarges the
classical notion of convergence (usually it has been the convergence by the iterated
composition of a map or the transport along a flow by time-shifting).

Definition 4.1. Let us consider a dynamical system (X, γ) where γ is a homotopy.
Let α be a homotopy on X (i.e., α ∈ H(X)). The ω-limit set of α is the set of
homotopies β ∈ H(X) which are all limits of some sequences Fγ(α, ti) for ti → ∞
(i = 1, 2, · · · ). Here, the metric on the homotopy space is given by the uniform
metric (Definition 2.6).

Remark 4.2. If we define f(x) = γ(x, 1), g(x) = α(x, 1), then the ω-limit set of g
is the set of limit maps of sequences Fnif (g) for ni →∞ (i = 1, 2, · · · ) where ni ∈ N.
Therefore, a limit homotopy in an ω-limit set, if any, would express a limit map
by putting ni to the time variable t. If γ is trivial, i.e., γ(x, t) = x for any t, then
the ω-limit set of any flow α is the singleton set {α}. But, if γ is not trivial, the
existence of a limit homotopy will be denied in Theorem 4.7.

Before going to the theorem, we may guess out an evidence of the nonexistence
of a limit homotopy, by using a finer metric, say, the uniform C1-metric.

Remark 4.3. Let H1(X) be the set of C1-homotopies on X ⊂ Rn. By a C1-
homotopy, we mean a homotopy α such that for any x ∈ X, α(x, •) : R → X is
C1-differentiable.

Let γ ∈ H1(X). Assume that ∂
∂tγ(x0, t)|t=0 6= 0 for some fixed x0 ∈ X.

This amounts to non-triviality of γ. Let us put γ̇0 = ∂
∂tγ(x0, t)|t=0. Let α̇0 =

∂
∂tα(x0, t)|t=0. Suppose there exists a limit homotopy of α in the uniform C1-metric
(i.e., the first order derivatives, as well as the continuously differentiable homotopies
Fγ(α, ti), converge). By the chain rule, we have

∂

∂s
Fγ(α, ti)(x0, s)|s=0 =

∂

∂s
γ(α(x0, s), tis)|s=0

=
∂

∂x
γ(x0, 0) · α̇0 + tiγ̇0,

which cannot be convergent because tiγ̇0 does not converge as ti → ∞. This is a
contradiction.

Definition 4.4. We say γ ∈ H(X) is trivial if γ(x, s) = x for every x ∈ X and
every t ∈ R.

Definition 4.5. An attractor of (Fγ ,H(X)) is a proper closed subset A of H(X)
such that there exists an open set U containing A satisfying

A =
⋂
t≥0

Fγ(U, t).
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Remark 4.6. There are several definitions of attractors. The above one is a slight,
but direct and natural generalization of that of Smale[18, pp.786]. In fact, to have
the asymptotic stability, one notice papers by Milnor by which various implications
between attractors are studied. See [15], especially [16, pp.517]. In [16], it is
shown that our definition coincides with the asymptotically stable attractor if it
is compact. The compactness assumption is not satisfactory in many applications
to non-compact space, e.g., the phase space H(X) is not compact. With only
the compact boundary of a given attractor, the attractor can be proven to be
asymptotically stable (ref. [6]).

Now we have a main theorem. The proof is presented after a lemma.

Theorem 4.7. For any nontrivial γ ∈ H(X), every ω-limit set for Fγ is an empty
set.

Corollary 4.8. For any nontrivial γ ∈ H(X), there does not exist an attractor.

The following lemma comes from [5, Lemma 3.5]. The proof is short, so we
reproduce it for the convenience’s sake.

Corollary 4.9. Let γ ∈ H(X). Assume that there is x ∈ X such that γ(x, s) = x
for not every t ∈ R. Then, there exist r, s0, ε > 0 such that

dX(BX(x, r), γ(BX(x, r), s0)) ≥ ε,

where BX(x, r) = {y ∈ X|dX(y, x) ≤ r} and dX(A,B) = inf{dX(a, b)|a ∈ A, b ∈
B} for two subsets A,B of X.

Proof. There exists s0 > 0 such that x 6= γ(x, s0) and we can take an ε with
dX(x, γ(x, s0)) > 3ε. From the continuity, there is a positive real number r with
ε > r such that γ(BX(x, r), s0)) ⊆ BX(γ(x, s0), ε), which completes the proof. �

The assumption of Lemma 4.9 is equivalent to the non-triviality of γ.

Proof of Theorem 4.7. Suppose the contrary; we have a homotopy β which is an
element of the ω-limit set of some homotopy α. Then, we have ti →∞ (i = 1, 2, · · · )
such that Fγ(α, ti)→ β. Thus, given any ε > 0,

(4.1) dX(γ(α(x, s), tis), β(x, s)) < ε

for any x ∈ X, s ∈ R and all sufficiently large i. Now, let us choose x ∈ X
such that the assumption of the above lemma is satisfied. Let r, s0, ε > 0 as in
Lemma 4.9. Let si = s0

ti
. For a sufficiently large i, α(x, si), β(x, si) are contained in

BX(x, r) because si → 0. Since γ(α(x, si), tisi) = γ(α(x, si), s0) ∈ γ(BX(x, r), s0),
and β(x, si) ∈ BX(x, r), by Lemma 4.9, we obtain

dX(γ(α(x, si), s0), β(x, si)) ≥ ε,

which contradicts (4.1). �
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5. Some examples of the envelopes

We illustrate some examples of the functional envelopes, the envelope of flows
and the envelope of homotopies.

Example 5.1 ([5], Example 3.6). Let X be a 2-dimensional unit sphere S2. Let γ
be a periodic flow whose trajectories are latitudes with the simultaneous periodicity
γ(x, t0) = γ(x) for any x ∈ X and a fixed t0 > 0, say t0 = 100. Let α be a flow
whose trajectories are longitudes. By Theorem 4.7, the ω-limit set of α is empty.
But if we put f(x) = γ(x, 1), g(x) = α(x, 1) as in Remark 4.2, g is a limit map of
g, i.e. g itself is an element of the ω-limit set of g. Indeed, by the periodicity of f ,
fn(g) = g for all n ∈ 100Z.

Example 5.2. The above phenomenon is observed in a simpler example. Let X
be a unit circle S1. Let γ be any nontrivial homotopy with γ(x, n) = x for any
x ∈ X and any n ∈ Z. For instance, γ is a rotation with the period 1. By the same
logic with the above example, any ω-limit set should be empty. But the function
f : X → X defined by f(x) = γ(x, 1) = x, is in the ω-limit set for Ff .

The last example again recycles the dynamics on S1 in the above example,
in order to show a difference between the envelope of homotopies and flows. The
example is dealt with in [4, §1] during their study on diffeomorphisms of S1 with
non-trivial centralizers.

Example 5.3. Let D be the set of C∞ Morse-Smale diffeomorphisms f such that
the p-time composite fp of f is a time 1 map of a Morse-Smale vector field X on S1

where p is the period (=the least common multiple of the periods of finite periodic
points). By [4, Proposition 1.10], D is dense in Diff1(S1). By the parallel method
of [4], one can show that F(S1) is dense in H(S1) in C1-topology. Let αs ∈ F(S1)
be a family of flows parametrized by s ∈ R1. For instance, αs : S1 × R → S1 by
(x, t) 7→ x + st for the canonical identification S1 ∼= R1/Z. Define α′ ∈ H(S1) by
α′(x, t) = αt(x, t). Obviously, α′ /∈ F(S1). One can realize that this is always the
case whenever a non-trivial family of flows is given. Also, such a phenomenon is
reflected in Diff1(S1) as D is dense but not open. In fact, if we denote the time ε
map by Tε : H1(S1) → Diff1(S1) where 0 < ε << 1 and H1(S1) is the subset of
H(S1) of C1-homotopies, then Tε is an open map (while Tε|F1(S1) is a dense image).
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