• Title/Summary/Keyword: homologymodeling

Search Result 1, Processing Time 0.016 seconds

NDP-sugar production and glycosylation of ${\varepsilon}$-rhodomycinone in Streptomyces venezuelae (Streptomyces Peucetius에서의 ${\varepsilon}$-rhodomycinone 추출 및 이종균주에서의 rhodomycin D 생산 연구)

  • Park, Sung-Hee;Cha, Min-Ho;Kim, Eun-Jung;Yoon, Yeo-Joon;Sohng, Jae-Kyung;Lee, Hee-Chan;Liou, Kwang-Kyoung;Kim, Byung-Gee
    • KSBB Journal
    • /
    • v.23 no.1
    • /
    • pp.44-47
    • /
    • 2008
  • Anthracycline antibiotics doxorubicin (DXR) is clinically important cancer therapeutic agent produced by Streptomyces peucetius. DXR result by further metabolism of rhodomycin D (RHOD) and require a deoxy-sugar component for their biological activity. In this study, production of TDP-L-daunosamine and its attachment to ${\varepsilon}$-rhodomycinone (RHO) to generate RHOD has been achieved by bioconversion in Streptomyces venezuelae that bears eleven genes. S. peucetius seven genes (dnmUTJVZQS) were transformed by plasmid and S. venezuelae two genes desIII, IV and two more S. peucetius drrA, B genes were integrated into chromosomal DNA. To generate the feeding substrate RHO, 6L S. peucetius grown on agar plate was harvested, extracted with organic solvent and then purified using preparative HPLC. Recombinant S. venezuelae grown on agar plate containing RHO was harvested and its n-butanol soluble components were extracted. The glycosylated product of aromatic polyketide RHO using heterologous host S. venezuelae presents the minimal information for TDP-L-daunosamine biosynthesis and its attachment onto aglycone. Moreover, the structure of auxiliary protein, DnrQ, was predicted by fold recognition and homology modeling in this study. This is a general approach to further expand of new glycosides of antitumor anthracycline antibiotics.