• Title/Summary/Keyword: homogeneous charge compression ignition (HCCI)

Search Result 89, Processing Time 0.021 seconds

A DNS Study of Ignition Characteristics of Lean PRF/Air Mixtures under HCCI Conditions (HCCI 조건에 일어나는 희박 PRF/공기 혼합물의 점화특성에 관한 직접수치모사 연구)

  • Luong, Minh Bau;Yoo, Chun Sang
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.153-156
    • /
    • 2012
  • Direct numerical simulations (DNSs) of ignition of lean primary reference fuel (PRF)/air mixtures under homogeneous charge compression ignition (HCCI) conditions are performed using 116-species reduced chemistry. The influence of variations in the initial temperature field, imposed by changing the variance of temperature, and the fuel composition on ignition of lean PRF/air mixtures is studied using the displacement speed analysis.

  • PDF

An Experimental Study on the Characteristics of Combustion and Emission in a Gasoline Direct Injection Type HCCI Engine by Controlling Mixture Formation (가솔린 직접분사식 HCCI 엔진의 혼합기 제어에 의한 연소 및 배기 특성에 관한 실험적 연구)

  • 김형민;류재덕;이기형
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.24-30
    • /
    • 2004
  • As the environmental pollution becomes serious global problem, the regulation of emission exhausted from automobiles is strengthened. Therefore, it is very important to know how to reduce the NOx and PM simultaneously in diesel engines, which has lot of merits such as high thermal efficiency, low fuel consumption and durability. By this reason, the new concept called as Homogeneous Charge Compression Ignition(HCCI) engines are spotlighted because this concept reduced NOx and P.M. simultaneously. However, there is trade off between output and NOx in a HCCI engine. In this study, output and emission characteristics for a gasoline direct injection type HCCI engine were investigated to clarify the effects of intake air temperature, injection time and mixture formation. From these experiments, we found that the smoke was not produced when the fuel was injected earlier than BTDC 90$^{\circ}$. In addition, the output was increased because of delay of ignition time and NOx emission was decreased because of homogeneous charge of first injection in case of split injection.

Knock Characteristic Analysis of Gasoline and LPG Homogeneous Charge Compression Ignition Engine (가솔린과 LPG 예혼합 압축 착화 엔진의 노킹 특성)

  • Yeom, Ki-Tae;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.54-62
    • /
    • 2007
  • The knock characteristics in an engine were investigated under homogeneous charge compression ignition (HCCI) operation. Liquefied petroleum gas (LPG)and gasoline were used as fuels and injected at the intake port using port fuel injection equipment. Di-methyl ether (DME) was used as an ignition promoter and was injected directly into the cylinder near compression top dead center (TDC). A commercial variable valve timing device was used to control the volumetric efficiency and the amount of internal residual gas. Different intake valve timingsand fuel injection amounts were tested to verify the knock characteristics of the HCCI engine. The ringing intensity (RI) was used to define the intensity of knock according to the operating conditions. The RI of the LPG HCCI engine was lower than that of the gasoline HCCI engine at every experimental condition. The indicated mean effective pressure (IMEP) dropped when the RI was over 0.5 MW/m2and the maximum combustion pressure was over 6.5MPa. There was no significant relationship between RI and fuel type. The RI can be predicted by the crank angle degree (CAD) at 50 CA. Carbon monoxide (CO) and hydrocarbon (HC) emissions were minimized at high RI conditions. The shortest burn duration under low RI was effective in achieving low HC and CO emissions.

Effect of Valve Lift and Timing on Internal Exhaust Gas Recirculation and Combustion in DME Homogeneous Charge Compression Ignition Engine (DME 예혼합 압축 착화 엔진에서 밸브 양정과 개폐시기가 내부 배기가스 재순환과 연소에 미치는 영향)

  • Jang, Jin-Young;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.93-100
    • /
    • 2009
  • Intake/exhaust valve timing and exhaust cam lift were changed to control the internal exhaust gas recirculation (IEGR) and combustion phase of homogeneous charge compression ignition (HCCI) engine. To measure the IEGR rate, in-cylinder gas was sampled during from intake valve close to before ignition start. The lower exhaust cam made shorter valve event than higher exhaust cam and made IEGR increase because of trapping the exhaust gas. IEGR rate was more affected by exhaust valve timing than intake valve timing and increased as exhaust valve timing advanced. In-cylinder pressure was increased near top dead center due to early close of exhaust valve. Ignition timing was more affected by intake valve timing than exhaust valve timing in case of exhaust valve lift 8.4 mm, while ignition timing was affected by both intake and exhaust valve timing in case of exhaust valve 2.5 mm. Burn duration with exhaust valve lift 2.5 mm was longer than other case due to higher IEGR rate. The fuel conversion efficiency with higher exhaust valve lift was higher than that with lower exhaust valve lift. The late exhaust and intake maximum open point (MOP) made the fuel conversion efficiency improve.

An Experimental Study on the Two Stage-Ignition of Cool Flame and Hot Flame in HCCI Engine According to Fuel Composition (연료조성에 따른 HCCI 엔진의 냉염 및 열염의 2단연소 특성에 관한 실험적 연구)

  • Kim, Hyung-Min;Ryu, Jea-Duk;Lee, Ki-Hyung;Lee, Chang-Sik
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.13-19
    • /
    • 2003
  • As the environmental pollution becomes serious global problem, the regulation of emission exhausted from automobiles is strengthen. Therefore, it is very important to know how to reduce the NOx and PM simultaneously in diesel engines, which has lot of merits such as high thermal efficiency, low fuel consumption and durability. By this reason, the new concept called as Homogeneous Charge Compression Ignition(HCCI) engines are spotlighted because this concept reduced NOx and P.M. simultaneously. However, it is well known that HCCI engines increased HC and CO. Thus, the investigation of combustion characteristics which consists cool and hot flames for HCCI engines were needed to obtain the optimal combustion condition. In this study, combustion characteristics for direct inject type HCCI engine such as quantity of cool flame and hot flame, ignition timing and ignition delay were investigated to clarify the effects of these parameters on performance. The results revealed that diesel combustion showed the two-stage ignition of cool flame and hot flame, the rate of cool flame increase and hot flame decrease with increasing intake air temperature. On the other hand, the gasoline combustion is the single-stage ignition and ignition timing is near the TDC. In addition mixed fuel combustion showed different phenomenon, which depends on the ratio of gasoline component. Ignition timing of mixed fuel is retarded near the TDC and the ignition delay is increased according to ratio of gasoline.

  • PDF

HCCI Combustion of DME in a Rapid Compression and Expansion Machine (급속압축팽창기를 이용한 DME의 HCCI 연소)

  • Sung, Yong-Ha;Jung, Kil-Sung;Choi, Byung-Chul;Lim, Myung-Taeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.8-14
    • /
    • 2007
  • Compression ignition of homogeneous charges in IC engines indicates possibilities of achieving the high efficiency of DI diesel engines with low level of NOx and particulate emissions. The objectives of this study are to further understand the characteristics of the HCCI(Homogeneous charge compression ignition) combustion and to find ways of extending the rich HCCI operation limit in an engine-like environment. DME fuel is supplied either in the form of premixture with air or directly injected in the combustion chamber of a rapid compression and expansion machine under the conditions of various equivalence ratio and injection timing. The cylinder pressure is measured and the rate of heat release is computed from the measured pressure for the analysis of the combustion characteristics. The experimental data show that the RCEM can operate without knock on mixtures of higher equivalence ratio, when DME is directly injected in the combustion chamber than introduced as a fraction of a perfect or nearly perfect premixture. Very early fuel injection timings usually employed in HCCI operation are seen to have only insignificant effects in control of ignition timing.

A Study on the Spray and Combustion Characteristics of a HCCI Engine according to Injection Conditions using a Narrow Angle Injector (좁은 분사각을 갖는 인젝터를 이용한 예혼합 압축착화 엔진의 분사조건에 따른 분무 및 연소특성에 관한 연구)

  • Kim, Hyung-Min;Kim, Yung-Jin;Ryu, Jea-Duk;Lee, Ki-Hyung
    • Journal of ILASS-Korea
    • /
    • v.11 no.3
    • /
    • pp.161-167
    • /
    • 2006
  • As the exhaustion of petroleum resources and air pollution problems are getting serious recently, there are growing interests in premixed diesel engines which have the potential of achieving a more homogeneous mixture near TDC compared to conventional diesel engines. Early studies have shown that the fuel injection frequency and spray angle affected the mixture formation and combustion in a HCCI(Homogeneous Charge Compression Ignition) engine. Therefore, the purpose of this study is to investigate the relationship between combustion and mixture formations by injection timing and frequency using a narrow angle injector, NADI (Narrow Angle Direct Injection). In this study, we found that the fuel injection timing and injection frequency affect the mixture formations and then affect combustion in the HCCI engine.

  • PDF

Analysis of Compression-induced Auto-ignition Combustion Characteristics of HCCI and ATAC Using the Same Engine

  • Iijima, Akira;Shoji, Hideo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1449-1458
    • /
    • 2006
  • Controlled Auto-ignition (CAI) combustion processes can be broadly divided between a CAI process that is applied to four-cycle engines and a CAI process that is applied to two-cycle engines. The former process is generally referred to as Homogeneous Charge Compression Ignition (HCCI) combustion and the later process as Active Thermo-Atmosphere Combustion (ATAC) The region of stable engine operation differs greatly between these two processes, and it is thought that the elucidation of their differences and similarities could provide useful information for expanding the operation region of HCCI combustion. In this research, the same two-cycle engine was operated under both the ATAC and HCCI combustion processes to compare their respective combustion characteristics. The results indicated that the ignition timing was less likely to change in the ATAC process in relation to changes in the fuel octane number than it was in the HCCI combustion process.

Fuel Stratification Effects of LPG-DME Compression Ignition Engine (LPG-DME 압축착화 엔진의 성층화 영향)

  • Yeom, Ki-Tae;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.78-85
    • /
    • 2008
  • The exhaust emission characteristics of a liquefied petroleum gas-di-methyl ether (LPG-DME) compression ignition engine was investigated under homogeneous charge, stratified charge and diffusion combustion conditions. LPG was used as the main fuel and injected into the combustion chamber directly. DME was used as an ignition promoter and injected into the intake port. Different LPG injection timings were tested to verify the combustion characteristics of the LPG-DME compression ignition engine. The combustion was divided into three region which are homogeneous charge, stratified charge, and diffusion combustion region according to the injection timing of LPG. The HC emission was reduced with LPG stratification. However, the carbon monoxide and particulate matter emissions were increased. The ignition timing was advanced with LPG stratification. This advance combustion was because of charge temperature and cetane number stratification with LPG.

EFFECT OF ADDITIVE ON THE HEAT RELEASE RATE AND EMISSIONS OF HCCI COMBUSTION ENGINES FUELED WITH RON90 FUELS

  • Lu, X.C.;Ji, L.B.;Chen, W.;Huang, Z.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • The effect of the di-tertiary butyl peroxide (DTBP) additive on the heat release rate and emissions of a homogeneous charge compression ignition (HCCI) engine fueled with high Research Octane Number (RON) fuels were investigated. The experiments were performed using 0%, 1%, 2%, 3%, and 4% (by volume) DTBP-RON90 blends. The RON90 Fuel was obtained by blending 90% iso-octane with 10% n-heptane. The experimental results show that the operation range was remarkably expanded to lower temperature and lower engine load with the DTBP additive in RON90 fuel. The first ignition phase of HCCI combustion was observed at 850 K and ended at 950 K while the hot ignition occurred at 1125 K for all fuels at different engine working conditions. The chemical reaction scale time decreases with the DTBP addition. As a result, the ignition timing advances, the combustion duration shortens, and heat release rates were increased at overall engine loads. Meanwhile, the unburned hydrocarbon (UHC) and CO emissions decrease sharply with the DTBP addition while the NOx emissions maintain at a lower level.