• 제목/요약/키워드: holocellulose

검색결과 73건 처리시간 0.022초

닥나무 박피 자동화를 위한 닥 인피의 구성성분 분석 (Component Analysis of Paper Mulberry Bark for the Automation of Bark Peeling Process)

  • 서진호;김형진
    • 펄프종이기술
    • /
    • 제43권1호
    • /
    • pp.74-82
    • /
    • 2011
  • The bast fiber of Paper mulberry has been generally used as a fibrous raw material in traditional Hanji-making. Nowadays, its uses is expanded to different special purposes such as paper mulberry yarn, laminated paper, antimicrobial paper depending on its application. Despite the wide array of the use of mulberry fibers, it is still limited due to some difficulties in the automation process of manufacturing works. This study is focused on the analysis of chemical components and morphological properties of paper mulberry bark for the automation of bark peeling process. The bast tissue of paper mulberry was separated in three plies; black outer layer, green inner layer, and white inner layer. The total lignin content, holocelluloses, extractives and ashes, and the anatomical structure of the three layers in mulberry bark tissue were investigated. The analysis showed that the black outer layer is composed of about 50% of total lignin content, whereas the white inner layer is composed of about 90% of holocellulose content.

칡뿌리의 섬유 자원화에 관한 연구(제 1보) - 칡뿌리의 해부학적 및 화학적 특성 - (Studies on the Application of Arrowroots for the Use of Paper Fiber (Part 1) - Anatomical and Chemical Properties of Arrowroots -)

  • 조현진;윤승락;황병호
    • 펄프종이기술
    • /
    • 제43권1호
    • /
    • pp.57-64
    • /
    • 2011
  • The purpose of this research is to investigate the anatomical and chemical properties of arrowroots for the use of paper fibers. The cells consisting of arrowroots showed certain affinities with those in the fibers and vessels of hardwood. Its parenchyma cells showed different shapes with those of hardwood. It was observed that starch was filled in the multi-shape cells. The average width and length of arrowroot fibers were $15.2{\mu}m$ ($11.1-20.3{\mu}m$) and 1.9 mm (1.49 mm-2.31 mm), respectively. In the chemical characteristics of arrowroots, the contents of cold- and hot-water, alcohol-benzene, and alkali extractives were 12-17%, 15.6%, and 38.8%, respectively. Its chemical composition was 61.3% holocellulose, 15.5% lignin and 2.0% ash.

Physical Properties of Agro-Flour Filled Aliphatic Thermoplastic Polyester Bio-Composites

  • Eom, Young Geun;Kim, Hee Soo;Yang, Han Seung;Kim, Hyun Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • 제32권3호
    • /
    • pp.71-78
    • /
    • 2004
  • The purpose of this study was to investigate the water absorption and thickness swelling of biocomposites at room temperature. These properties of bio-composites mainly depend on the ability of the agro-flour to absorb water through hydrogen bonding between water and the hydroxyl groups of the holocellulose and lignin in the cell wall. As the content of agro-flour increased, the water absorption and thickness swelling of the bio-composites increased. The effects of agro-flour content and rice husk flour (RHF) particle size on the water absorption and thickness swelling of the bio-composites were evaluated. In general, wood-based materials showed significantly higher water absorption and thickness swelling than the bio-composites. This might be attributed to the ability of the polybutylene succinate (PBS) hydrophobic polymer to prohibit the water absorption and thickness swelling of the bio-composites, Therefore, the use of agro-flour filled PBS bio-composites, which exhibit improved dimensional stability in comparison with wood-based materials, is recommended.

활성(活性) 알칼리 농도(濃度)가 일본잎갈나무 UKP의 탈(脫)리그닌에 미치는 영향(影響) (Effect of active alkali concentration on the delignification of Larch UKP)

  • 원종명;조병묵
    • Journal of the Korean Wood Science and Technology
    • /
    • 제4권1호
    • /
    • pp.21-27
    • /
    • 1976
  • 본실험(本實驗)은 일본잎갈나무재(材)를 공시원료(供試原料)로 하여 UKP 제조시(製造時) 활성(活性)알칼리 농도(濃度)가 탈(脫)리그닌 및 펌프품질에 미치는 영향(影響)을 구명(究明)하여 그 최적(最適) 펄프화 조건(條件)을 확립(確立)코자 실시한 바, 그 결과를 요약(要約)하면 다음과 같다. 1) 일본 잎갈나무재(材)는 비중(比重)이 0.42, 섬유장(纖維長)이 3.34 mm, 섬유폭(纖維幅)이 0.035mm로서 다른 침엽수류(針葉樹類)와 비슷하였다. 2) 일본잎갈나무는 다른 침엽수(針葉樹)와 달리 holocellulose 및 pentosan의 함량(含量)이 낮고 lignin 함량(含量)이 높아 펄프 수율(收率)을 저하(低下)시키는 결점(缺點)을 갖고 있다. 3) 활성(活性)알칼리 농도(濃度)의 증가(增加)에 따라 lignin 함량(含量)과 펄프 수율(收率)이 감소했다. 4) 활성(活性)알칼리 농도(濃度) 18~21%에서 최고(最高)의 정선수율(精選收率)이 나타났다. 5) 탈(脫)리그닌화(化)가 진행(進行)됨에 따라 펄프의 명해성(明解性)이 개선되었다. 6) pulp sheet의 백색도(白色度)는 탈(脫)리그닌정도(程度)와 비례관계가 있었다. 7) 일본잎갈나무 UKP의 비파열도(比破裂度) 및 열단장(裂斷長)은 평균수준 이었으나 비인열도(比引裂度)가 매우 높아 중색열지용(中色裂紙用)으로 적합(適合)하였다. 8) 활성(活性)알칼리 농도(濃度)가 증가(增加)함에 따라 공시(供試)펄프의 제반강도(强度)가 개선되었다.

  • PDF

산업용지의 벌크 향상 및 건조에너지 절감을 위한 분말상 첨가제 제조기술 개발 (I) - 신규 유기물질 맥주박의 화학적.물리적 특성 평가 - (Development of New Powdered Additive and Its Application for Improving the Paperboard Bulk and Reducing Drying Energy (I) -Analysis of Chemical and Physical Properties of Brewers Grain -)

  • 이지영;김철환;최재성;김병호;임기백;김다미
    • 펄프종이기술
    • /
    • 제44권2호
    • /
    • pp.58-66
    • /
    • 2012
  • Brewers grain is a byproduct of beer brewing and consists primarily of grain husks, pericarp, and fragments of endosperm. Although this material is consumed by animals and used as fertilizer, a large amount of brewers grain is simply discarded. Therefore, new methods for utilizing this fibrous resource should be pursued. In this study, we examined the potential utilization of brewers grain as an additive in the paperboard industry by determining the chemical composition of brewers grain and the physical properties of brewers grain powders after grinding with two types of grinders. We found that brewers grain had a lower holocellulose content and higher lignin content and intermediate ash content when compared to other biomass materials, and did not contain any contaminants that would interfere with the papermaking process. Particles had a higher fiber length, less fiber width, and narrower shape factor distribution when ground by a blender type grinder than by a pin crusher type grinder. The blender type grinder was concluded to make regular brewers grain particles appropriate for papermaking.

땅콩박과 마늘대를 이용한 제지용 분말상 첨가제 적용에 대한 연구 (Application of new powdered additives to paperboard using peanut husk and garlic stem)

  • 이지영;이은규;성용주;김철환;최재성;김병호;임기백;김다미
    • 펄프종이기술
    • /
    • 제43권4호
    • /
    • pp.40-48
    • /
    • 2011
  • In this study, we investigated the usability of new powdered additives in the paperboard industry. We manufactured the powdered additives from peanut husks and garlic stems by grinding. The chemical composition, particle size, particle size distribution, and particle shape were investigated to identify the basic properties of the powdered raw materials. To determine the effect of the powdered additives on paper properties, handsheets were prepared by adding the powdered additives to the pulp slurry. The chemical composition, such as the contents of holocellulose, lignin, and ash, showed similar values to those of other biomass materials. The particles of peanut husk powder were irregularly shaped, smaller, and had a broader particle size distribution than those of the garlic stem powder, which had the fibril form. The particles of the two powdered raw materials showed a positioning of expansion in the fiber network, resulting in increased bulk and a loss of strength. Handsheets containing garlic stem particles were stronger than handsheets containing peanut husk particles. Finally, the new powdered additives are beneficial to the bulk of paperboard.

기능성 섬유원료 개발을 위한 연잎줄기 펄프의 특성 (Characteristics of Lotus (Nelumbo nucifera G.) Leafstalk Pulp for the Development of High Performance Paper)

  • 최태호;서지철;이지년
    • 펄프종이기술
    • /
    • 제42권2호
    • /
    • pp.67-74
    • /
    • 2010
  • This study was carried out to investigate the pulping and papermaking characteristics of lotus (Nelumbo nucifera G.) leafstalk for the development of high performance paper. Anatomical and chemical properties of the lotus leafstalk were analyzed. The pulping and papermaking properties of the lotus leafstalk by conventional alkali and sulfomethylated pulping processes were also evaluated. The length and width of fibers were 0.06-3.32 mm (av. 1.23 mm) and 3.47-25.6 ${\mu}m$ (av. 20.7 ${\mu}m$), respectively. The length and width of vessel elements were 0.07-0.78 mm (av. 0.20 mm) and 14.1-330.0 ${\mu}m$ (av. 54.13 ${\mu}m$), respectively. The fiber length/fiber width ratio was 60.20. The extractives (cold water, hot water, 1% NaOH and ethanol-benzene) and lignin content of lotus leafstalk were higher than those of plant bast fiber. The contents of holocellulose, lignin, and ash were 73.8%, 24.3%, and 4.3%, respectively. The pulp yields based on pulping methods were sulfomethylated pulping av. 52%, and alkaline pulping av. 42%. The conventional alkaline pulping shows better pulp and sheet properties than the sulfomethylated pulping which was modified pulping processes. But the sulfomethylated pulping shows higher brightness than alkali pulping. In the consequence of FE-SEM observation, lotus leafstalk pulp consists of various kinds of thin walled fibers which have large amount of small pits.

고점도 펄프를 위한 새로운 한지 펄프화법의 개발(제1보) - 닥나무 백피의 상압 펄프화 특성 - (Development of High Viscosity Pulping Method for Korean Paper (I) - Atmospheric Pressure Pulping Characteristics of Paper Mulberry White Bast -)

  • 이상현;최태호
    • 펄프종이기술
    • /
    • 제43권2호
    • /
    • pp.57-65
    • /
    • 2011
  • Pulping of paper mulberry (Broussonetia kazinoki) white bast has been examined by novel atmospheric pressure pulping methods. The viscosity of pulp has been found to be highly sensitive and variable with pulping methods. Therefore, selections of pulping chemicals and conditions are very important. Two kinds of pulping procedures were employed for the high viscosity pulp manufacturing. The one is ammonium oxalate treatment and the other is sodium chlorite and acetic acid treatment. Not only chemical components and pulp yields which of paper mulberry white bast but also water retention value (WRV), whiteness index, yellowness index, and colors of every pulp were examined. The hot water, 1% NaOH, and ethanol-benzene extractives which of paper mulberry white bast were 4.48%, 28.45%, and 2.84%, respectively. The contents of holocellulose, lignin, and ash were 90.66%, 1.05%, and 2.18%, respectively. In the pulp yields, group 1 which treated with only ammonium oxalate were 77.04-81.71%, group 2 which treated with ammonium oxalate and acidified sodium chlorite separately and washed between first and second stages were 64.15-83.90%, group 3 which treated with ammonium oxalate and acidified sodium chlorite separately and not washed between first and second stages were 57.35-73.17%, and group 4 which treated with mixed ammonium oxalate and acidified sodium chlorite were 66.58-68.43%. The pulps treated with acidified sodium chlorite showed high whiteness index, but the pulps treated with only ammonium oxalate showed high yellowness index. Variations in the combinations of treatments resulted in different pulp characteristics.

혐기성 세균 Ruminococcus albus F-40에 의한 목재 cellulose의 분해특성 (Degradation Characteristics of Wood Cellulose by Ruminal Cellulolytic Anaerobic Bacterium Ruminococcus albus F-40)

  • 김윤수;위승곤;명규호
    • Journal of the Korean Wood Science and Technology
    • /
    • 제25권3호
    • /
    • pp.83-95
    • /
    • 1997
  • The degradation mode of lignocellulose by anaerobic ruminal cellulolytic bacterium Ruminococcus albus F-40 was investigated. Birchwood holocellulose and filter paper were incubated as the sole carbohydrate sources with using the Hungate techniques. After 2 or 4 days of incubation, samples were employed for chemical and electron microscopic evaluations. The degradation rate of cellulosic substrates and the adhesion rate of bacteria to the substrates increased proportionally with the decrease of relative crystallinity of cellulose, indicating the preferential breakdown of amorphous cellulose, by this bacterium. X-ray diffraction analyses and polarized light microscopy showed, however, that crystalline cellulose was also degraded by R. albus. FT-IR spectra indicated that not only cellulose but hemicellulose was also degraded by this bacterium. Electron microscopic investigations showed the protuberant structures on the surface of R. albus. These structures were much more significant when bacterial cells were grown in the media containing insoluble substrates, such as cellulose, indicating clearly that bacterial protuberant structures were induced by the substrates. Protuberant structures extended from the bacterial cells adhered tightly to the substrates and numerous vesicles covered the surface of cellulosic substrates affected. Cellulosome-like structures were distributed on the cellulose matrix. Electron microscopic works showed that diverse surface organells of R. albus were involved in the degradation of cellulosic materials. SEM examinations showed the breakdown of cellulose by R. albus was proceeded by severeal routes : short fiber formation, defibrillation and destrafication of cellulose microfibril.

  • PDF

전자빔 처리가 대마 인피섬유의 펄프화 및 초지 특성에 미치는 영향 (Effects of Electron Beam Treatment on the Characteristics of Pulping and Papermaking of Hemp Bast Fibers)

  • 배백현;서재환;정진호;이재정;백기현;김형진
    • 펄프종이기술
    • /
    • 제44권4호
    • /
    • pp.51-61
    • /
    • 2012
  • The new alkali pulping process combined with electron beam treatment was applied to utilize hemp bast tissues as a new valuable fibrous resource. Hemp bast tissues have some chemical properties with high lignin contents and holocellulose not to be defiberized by alkali pulping only, compared with the bast tissue of paper mulberry. To make up for the weakness of traditional alkali pulping process, electron beams were directly irradiated into the swelled bast tissue of hemp in NaOH solution and distilled water, and then facilitated the defiberization of hemp bast tissues. The papermaking from hemp bast fibers manufactured by the combination pulping process showed good apparent density, formation structure and air permeability, and had some mechanical properties with lower tensile, tear, burst strength and folding endurance. It is finally concluded that the combination pulping process with electron beam treatment could be suggested a new alternative for non-woody fibers.