• Title/Summary/Keyword: hollow-fiber membrane

Search Result 426, Processing Time 0.032 seconds

Removal of Pollutants and Recovery of Toxic Heavy Metals from Wastewater Using Microporous Hollow Fiber Modules

  • Yun, Chang-Han
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1993.04a
    • /
    • pp.25-27
    • /
    • 1993
  • Multiphase equilibrium-based processes for separation and purification generally utilize dispersed systems in which one phase is dispersed in the other as bubbles or drops or thin films. Using microporous membranes, novel techniques have been developed such that multiphase processes can now be carried out in a nondispersive fashion for gas-liquid (Sirkar, 1992) and liquid-liquid (Prasad and Sirkar, 1992) contacting processes. Among such processes, only nondispersive solvent extraction of pollutants using microporous membranes will be of concern here. These processes employ immobilized immiscible phase interfaces at the pore mouths in a microporous membrane. Through such interfaces, solutes are extracted into the solvent as two immiscible phases flow on two sides of a microporous membrane. Many advantages of such a technique over conventional dispersion-based extractors have been summarized (Prasad and Sirkar, 1992).

  • PDF

PREPARATION OF POLY(ETHYLENE-CO-VINYL ALCOHOL) MEMBRANE VIA THERMALLY INDUCED PHASE SEPARATION

  • Matsuyama, Hideto;Shang, Mengxian;Teramoto, Masaaki
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.74-77
    • /
    • 2004
  • Porous membranes were prepared via thermally induced phase separation (TIPS) of (ethylene-co-vinyl alcohol) (EVOH)/glycerol mixtures. The liquid-liquid (L-L) phase boundaries are shifted to higher temperature when the ethylene contents in EVOH increase. Moreover, the kinetic study proved that the growth of droplets formed by the general liquid-liquid (L-L) phase separation obeyed a power-law scaling relationship in the later stage of spinodal decomposition (SD). A new phase separation mechanism was presented, in which the L-L phase separation could be resulted from the crystallization. The hollow fiber membranes were prepared. The membranes showed asymmetric structures with skin layer near the outer surface, the larger pores just below the skin layer and the smaller pores near the inner surface. The effect of ethylene content (EC) in EVOH, cooling water bath temperature and take-up speed on membrane performance was investigated.

  • PDF

Gas Permeation Properties of Hydrocarbon/$N_2$ Mixture through PEI-PDMS Hollow Fiber Composite Membranes (Hydrocarbon/$N_2$ 혼합물의 분리를 위한 PEI-PDMS 중공사 복합막의 기체 투과 특성)

  • Lee, Chung Seop;Cho, Eun Hye;Ha, Seong Yong;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.22 no.4
    • /
    • pp.251-257
    • /
    • 2012
  • For the separation and recovery of n-pentane from nitrogen environment, the poly (dimethyl siloxane) (PDMS) composite membranes supported by polyetherimide (PEI) hollow fiber membranes were prepared. To characterize the gas separation properties of the resulting membranes, the permeance of n-pentane and nitrogen, concentrations of permeate and retentate, and recovery ratio were measured for n-pentane and nitrogen mixtures. The permeance of n-pentane and nitrogen, 2485.3 and 9.9 GPU, were observed respectively. As the stage cut decreases and the feed concentration increases, the n-pentane concentration in permeate tends to increase. In the meanwhile, the recovery efficiency tends to increase as the stage cut increases and the feed concentration decreases.

Preparation of Metal/Ceramic Composite Ultrafiltration Hollow Fiber Membranes (금속/세라믹 중공사형 복합 한외여과막의 제조)

  • Kim, In-Chul;Jeong, Bo-Reum;Lee, Dong-Wook;Park, Joo-Young;Kwon, Ja-Young;Lee, Kew-Ho
    • Membrane Journal
    • /
    • v.19 no.1
    • /
    • pp.47-53
    • /
    • 2009
  • The aim of this paper is to prepare metal/ceramic composite ultrafiltration membranes by coating inorganic particles on a metallic hollow fiber filter. The diameter and the pore size of the filter was 2.0 mm and $2{\sim}8{\mu}m$. The metal/ceramic composite ultrafiltration membranes were obtained by a coating process of silica and titania sols on top of the metallic filter. For this purpose the method of fast freeze drying and dip-coating were used. It was found that the pore size of the membrane was about 50 nm from SEM and PMI characterization. The pore size was controlled by changing the size of the particles, sintering period and temperature.

A Study on the Absorption of Carbon Dioxide using PVDF/Plasma Membrane Contactor (PVDF/플라즈마 막접촉기를 이용한 이산화탄소의 흡수에 관한 연구)

  • Choi, Seung-Hak;Gao, Tongzhai;Oh, Sae-Joong
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.161-169
    • /
    • 2005
  • Numerical simulation and experiments were carried out on the absorption of carbon dioxide using PVDF hollow-fiber membrane contactor. Water or monoethanolamine (MEA) aqueous soluton was used as absorbents. Simulation results showed that the concentration profile of carbon dioxide was less affected by the flow rate of MEA than that of water absorbent. The absorption rate and mass transfer coefficient of carbon dioxide increased as the concentration of MEA increased. The mass transfer coefficients obtained by experiments coincided with those obtained by numerical simulation and theoretical results for $CO_2-water$ system. However, for $CO_2-MEA$ system, the mass transfer coefficients obtained by experiments were lower than those obtained by simulation, while the simulation results agreed well with theoretical results. The durability of plasma-treated hollow fiber membranes was better than that of no plasma-treated ones.

Dynamic Characterization of Backpulsing Hollow Fiber Module System (역충격형 중공사모듈의 동특성 연구)

  • 노수홍;박상현;장진호
    • Membrane Journal
    • /
    • v.11 no.1
    • /
    • pp.14-21
    • /
    • 2001
  • Rapid backpulsing to reduce membrane fouling of hollow fiber ultrafiltration module (polyacrylonitrile with 50000 l'vlWCO, 1.4 rom OD and 0,9 mm ID) was studied with latex solutions. Values estimated by a theoretical model were compared with the ones obtained from the systems with or without backpulsing, Specific Cake resistance, time consUmt for cake growth, diffusion coefficient, and the rate constants of fnur fouling models; the complete, intermediate. standard blocking and cake filtration were calculated to obtain the theoretical values. High frequency backpulsing gave net increase of fluxes by 40~120%. Fluxes predicted by the model were in good agreement with experimental ones within 14% error bound, The optimum backpulsing strength was acquired at 20% in the ranges of 20~40% strength and the optimum frequcncv was acquired at 2 Hz in the ranges of 0.67~3 Hz.

  • PDF

Effects of Cross-linking Agents on the Acetic Acid Dehydration Behaviors of PVA-PAN Composite Hollow Fiber Membranes (가교제 종류가 PVA-PAN 복합 중공사 분리막의 초산 탈수 거동에 미치는 영향)

  • Kang, Su Yeon;Kim, Ji Seon;Cho, Eun Hye;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.24 no.4
    • /
    • pp.311-316
    • /
    • 2014
  • The polyacrylonitrile (PAN) hollow fiber composite membranes were prepared and their pervaporation performance was tested to concentrate the acetic acid aqueous solution. The coating of the composite membranes were confirmed by SEM images and the coating thickness was averagely $3.85{\mu}m$. As the crosslinking agent and the crosslinking temperature increase, the permeability decreases while the separation factor increases. Typically, the permeability $250g/m^2{\cdot}hr$ and the separation factor 13 were obtained for glutaraldehyde 13 wt% as the crosslinking agent and crosslinking temperature $140^{\circ}C$. And for the use of another crosslinking agent, poly (acrylic acid) 9 wt% and crosslinking temperature $140^{\circ}C$, the permeability $330g/m^2{\cdot}hr$ and separation factor 9 were obtained.

Separation of Low Molecular Weight of Dye from Aqueous Solution Using the Prepared Nano-composite Hollow Fiber Membranes (중공사형 나노복합막 제조를 이용한 수용액으로부터 저분자량의 염료 분리 연구)

  • Park, Cheol Oh;Lee, Sung Jae;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.28 no.3
    • /
    • pp.180-186
    • /
    • 2018
  • The nano-composite membranes were prepared onto the polyvinylidene fluoride (PVDF) hollow fiber membranes through twice dip-coating known layer-by-layer method. For the first coating, poly(vinylsulfonic acid, sodium salt)(PVSA) and Poly(styrene sulfonic acid)(PSSA) were used with varying the concentration and ionic strength (IS) and the poly(ethyleneimine)(PEI) as the second coating material was fixed at 10,000 ppm and IS = 0.3. To characterize the prepared nano-composite membranes, the permeabilities and rejection ratio were measured for each 100 ppm NaCl, $CaSO_4$, $MgCl_2$, and 25 ppm MO aqueous solution. The rejections were increased as the concentrations of coating materials increased. And it was confirmed that the salt rejections for PSSA as the coating material were higher than for PVSA. Typically, the permeability, 1.848 LMH and the rejection for MO 76.3% were obtained at the coating conditions of PSSA 30,000 ppm and I.S = 1.0.

A Study on Membrane Fouling by Flux and Linear Velocity in Coagulation/Ultrafiltration Membrane System (응집·한외여과 조합공정에서 플럭스와 선속도가 막오염에 미치는 영향에 관한 연구)

  • Moon, Seong-Yong;Lee, Sang-Hyup;Kim, Seung-Hyun;Yoon, Cho-Hee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.4
    • /
    • pp.429-436
    • /
    • 2005
  • A coagulation/ultrafiltration membrane hybrid system was operated to treat river water with capacity of $0.06m^3/d$. The impact on membrane fouling by flux and linear velocity was investigated. It is known that pressure increase is proportional to flux increase. However, pressure increase was much faster than theoretical value in the pilot plant test. So it was suggested that flux was on important factor in ultrafiltration of continuous operation. Membrane fouling was decreased when linear velocity was increased. This phenomenon was found more obviously without coagulation. With the combination of coagulation and sedimentation, membrane fouling was not reduced conspicuously. Big particles formed during coagulation and sedimentation were destroyed by feed and circulation pumping, which resulted in little effect on membrane fouling reduction. The degree of destruction was similar at various linear velocities. In this study, the hollow fiber membrane was used and the system was operated in pressure type module. In case of the system used in this study, membrane fouling has been affected lightly by linear velocity variation when coagulation pretreatment was applied.

The effect of thermodynamic stability of casting solution on the membrane inversion process morphology and permeation properties in phase inversion process

  • Kim, Jeong-Hoon;Lee, Kew-Ho
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.04a
    • /
    • pp.26-27
    • /
    • 1995
  • Most of synthetic polymeric membranes used in ultrafiltration, reverse osmosis and microfiltration processes are prepared by phase inversion(or phase separation) technique. In this technique, a homogeneous polymer solution is cast into thin film or hollow fiber shape and then immersed into a nonsolvent coagulant bath. The exchange of solvent and nonsolvent across the interface between casting solution and coagu!ant can make the casting solution phase-separate and form a membrane with a symmetric or asymmetric structure. Because of importance of this technique in membrane field, many investigations have been dedicated to elucidate the mechanism of membrane formation by phase inversion technique.[1-10] These investigation have suggested that the structure formation and permeation properties of phase inversion membrane depend on the variables such as the nature and content of casting solution and coagulant, temperature of casting solution and coagulant, and the diffusional exchange rate of solvent and nonsolvent etc. which can be related to the thermodynamic and kinetic properties of the casting system. The variables such as the nature and content of casting solution can also be the important factor affecting the structure formation and permeation property of the phase inversion membrane.

  • PDF