• Title/Summary/Keyword: hollow-fiber

Search Result 631, Processing Time 0.025 seconds

Thermal Anisotropy of Hollow Carbon Fiber-Carbon Composite Materials

  • Yang, Chun-Hoi;Shim, Hwan-Boh
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.91-95
    • /
    • 2005
  • Carbon composites were prepared with pitch-based round, C, hollow-type carbon fibers and pitch matrix. The thermal conductivities parallel and perpendicular to the fiber axis were measured by steady-state method. It was found that the thermal conductivities depended on the cross-sectional forms of the reinforcing fibers as well as the reinforcing orientation and carbon fiber precusors. Especially, mesophase pitch-based hollow carbon fiber-carbon composites had the most excellent thermal anisotropy, which was above 100.

Laser Beam Shaping Using Hollow Optical Fiber and Its Application in Laser Induced Thermal Printing

  • Yi, Jong-Hoon;Lee, Kang-In;Park, Ill-Hyun;Kwon, Jin-Hyuk
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.146-151
    • /
    • 2009
  • A Gaussian beam of single mode fiber laser was changed into a ring-shaped pattern after it was transmitted through the hollow optical fiber. The ring-shaped beam was focused on a plane by an f-. lens and it was scanned by a Galvano-mirror. The spatial profile of laser energy incident on a plane had two peaks at both sides of the scanned linear track. The profile was compared with the result obtained when the Gaussian beam was dithered transversely by an acousto-optic modulator. It is found that hollow optical fiber beam shaper can replace acousto-optic beam dithering device which is employed in a laser induced thermal printing system.

Simulation of Pervaporation Process Through Hollow Fiber Module for Treatment of Reactive Waste Stream from a Phenolic Resin Manufacturing Process (페놀수지 생산공정에서 배출되는 반응성 폐수처리를 위한 중공사막 모듈 투과증발 공정모사)

  • C. K Yeom;F. U. Baig
    • Membrane Journal
    • /
    • v.13 no.4
    • /
    • pp.257-267
    • /
    • 2003
  • For the treatment of reactive phenolic resin waste, a simulation model of pervaporative dehydration process has been developed through hollow fiber membrane module. Some of basic parameters were determined directly from dehydration of the waste liquid through a flat sheet membrane to get realistic values. The simulation model was verified by comparing the simulated values with experimental data obtained from hollow fiber membrane module. Hollow fiber membranes with active layer coated on inside fiber were used, and feed flew through inside hollow fiber. Feed flow rate affected membrane performances and reaction by providing a corresponding temperature distribution of feed along with fiber length. Feed temperature is also a crucial factor to determine dehydration and reaction behavior by two competing ways; increasing temperature increases permeation rate as well as water formation rate. Once the permeate pressure is well below the saturated vapor pressure of feed, permeate pressure had a slightly negative effect on permeation performance by slightly reducing driving force. As the pressure approached the vapor pressure of feed, dehydration performances declined considerably due to the activity ratio of feed and permeate.

Development of Composite Hollow Fiber Membranes for Olefin Off-gas Recovery (올레핀 배가스의 분리를 위한 중공사형 복합막의 개발)

  • Kim Jeong-Hoon;Choi Seung-Hak;Lee Soo-Bok
    • Membrane Journal
    • /
    • v.15 no.2
    • /
    • pp.157-164
    • /
    • 2005
  • In this study, composite hollow fiber membranes were developed for the recovery of olefin monomers in polyolefin industry off-gases. Polyetherimide (PEI) hollow fiber support membranes were fabricated from spinning solutions containing PEI, NMP and polyethylene glycol (PEG). The influence of dope solution and inner coagulant composition on the permeation properties and structure of hollow fiber supports was examined. PDMS was used as a selective layer and coated on PEI hollow fiber support. The thickness of active layer was controlled by changing coating solution concentration. The permeation properties of hollow fiber supports and composite membranes were characterized with a pure gas permeation test. The optimized composite hollow fiber membrane has $10\;{\mu}m$ selective layer and shows excellent separation performance; the ideal selectivity of olefins over nitrogen is in the following order: 1-butylene (6.4) > propylene (17) > ethylene (97), which selectivity data are similar to the intrinsic olefin/nitrogen selectivities of PDMS. This confirms that the new composite hollow fiber membranes suitable for olefin off-gas recovery has developed successfully.

Compression of hollow-circular fiber-reinforced rubber bearings

  • Pinarbasi, Seval;Okay, Fuad
    • Structural Engineering and Mechanics
    • /
    • v.38 no.3
    • /
    • pp.361-384
    • /
    • 2011
  • Earlier studies on hollow-circular rubber bearings, all of which are conducted for steel-reinforced bearings, indicate that the hole presence not only decreases the compression modulus of the bearing but also increases the maximum shear strain developing in the bearing due to compression, both of which are basic design parameters also for fiber-reinforced rubber bearings. This paper presents analytical solutions to the compression problem of hollow-circular fiber-reinforced rubber bearings. The problem is handled using the most-recent formulation of the "pressure method". The analytical solutions are, then, used to investigate the effects of reinforcement flexibility and hole presence on bearing's compression modulus and maximum shear strain in the bearing in view of four key parameters: (i) reinforcement extensibility, (ii) hole size, (iii) bearing's shape factor and (iv) rubber compressibility. It is shown that the compression stiffness of a hollow-circular fiber-reinforced bearing may decrease considerably as reinforcement flexibility and/or hole size increases particularly if the shape factor of the bearing is high and rubber compressibility is not negligible. Numerical studies also show that the existence of even a very small hole can increase the maximum shear strain in the bearing significantly, which has to be considered in the design of such annular bearings.

Clinical Comparison Between Inside Blood Flow Type and Outside Blood Flow Type in the Hollow Fiber Oxygenator (Hollow Fiber Oxygenator에서 Inside Blood Flow Type과 Outside Blood Flow Type의 임상적 비교)

  • 안재호
    • Journal of Chest Surgery
    • /
    • v.25 no.5
    • /
    • pp.451-457
    • /
    • 1992
  • The hollow fiber oxygenator is the most advanced one for the cardiopulmoanry bypass. They have two different types of the hollow fiber systems according to the way how the blood go through the fibers. One is inside blood flow type and the other outside type. In order to find out which is better to prevent blood cell destruction, we selected 40 valve replacing patients and divided them into 2 groups prospectively. In group I [n=20], inside blood flow type[BCM-7a], CO2 excretion is more effective than group II, that is partly because of the relative large surface area of the BCM-7. In group II [n=20], outside blood flow type [MAXIMAa], they have better quality to preserve platelet count. We also studied about several other items such as SaO2, Hemoglobin and RBC, WBC, fibrinogen, LDH, plasma hemoglobin, haptoglobulin and so on. But we cannot find any differences between two groups with any statistical meanings [p<0.05]. We conclude that both of two oxygenators are excellent in the aspects of gas exchange and blood cell preservation.

  • PDF

A Study on Shape Improvement of Dehumidifier for Pneumatic System using Computational Fluid Dynamics (전산유체역학을 이용한 공압시스템용 제습장치의 형상 개선에 관한 연구)

  • Jeong, Eun-A;Yun, So-Nam;Lee, Kee-Yoon
    • Journal of Drive and Control
    • /
    • v.16 no.2
    • /
    • pp.51-58
    • /
    • 2019
  • In this study, flow analysis and dehumidification experiment were conducted on hollow fiber membrane module to determine the dehumidification characteristics of its various configurations. A quantitative analysis of the CFD for four different models with a temperature of $30^{\circ}C$ and 30%RH inlet humidity was conducted. Each model has different shape parameters i.e. the number of hollow fiber membranes and the presence or absence of baffles. After comparison between the flow analysis results and dehumidification experiment results, the percentage error was found to be approximately 2%. The moisture removal rate for each model was calculated using flow analysis data. It was found that the moisture removal rate of refined model with three baffles and eight hollow fiber membranes was highest among the four modeled modules of hollow fiber membrane one, i.e. about 60%.

Preparation of PVDF Hollow Fiber Membrane and Absorption of SO2 from Flue Gas Using Bench Scale Gas-Liquid Contactor (PVDF 중공사막 제조 및 벤치규모 기-액 접촉기를 이용한 SO2 흡수특성)

  • Park, Hyun-Hee;Jo, Hang-Dae;Kim, In-Won;Lee, Hyung-Keun
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.521-528
    • /
    • 2008
  • The micro-porous asymmetric PVDF hollow fiber membranes for gas-liquid contactor were prepared by the dry-jet wet phase inversion process and the characteristics of hollow fiber membranes were evaluated by the gas permeation method and scanning electron microscope. The chemical absorbent for removal of $SO_2$ gas was sodium hydroxide at bench scale hollow fiber membrane contactor. The experiments were performed in a counter-current mode of operation with gas in the shell side and liquid in the fiber lumen of the module to examine the effect of various operating variables such as concentration of absorbent, gas flow rate, L/G ratio and concentration of inlet $SO_2$ gas on the $SO_2$ removal efficiency using PVDF hollow fiber membrane contactor. Membrane mass transfer coefficient($k_m$) was calculated by mathematical modeling. The volumetric overall mass transfer coefficient increased with increasing the concentration of absorbent and L/G ratio. The increase of the absorbent concentration and L/G ratio not only provides more sufficient alkalinity but also decreases liquid phase resistance. The volumetric overall mass transfer coefficient increased with increasing gas flow rate due to decreasing the gas phase resistance.

Membrane을 이용한 삼중수소 제거 촉매탑 설계

  • 김광신;손순환;송규민
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.427-432
    • /
    • 1998
  • 중수속의 삼중수소 제거 공정인 액상 촉매 교환 반응에서 중수의 촉매 표면 응축에 의한 성능 저하가 큰 문제의 하나로서 성능 저하를 감소시키기 위한 여러 가지 형태의 촉매탑이 고안 되었다. 본 연구에서는 membrane을 사용하여 중수와 촉매를 분리시킴으로써 촉매 성능 저하를 감소시킬 수 있는 촉매탑의 설계를 시도하였다. 세 가지 촉매탑이 고안되었는데 sheet type의 membrane을 사용한 multilayered type 과 double spiral type, hollow fiber membrane을 사용한 hollow fiber cartridge type 등이다. multilayered type은 구조가 단순하여 scale-up이 용이하고 double spiral type은 다른 type보다 유로의 blocking 문제가 작고 hollow fiber cartridge type은 최대의 비표면적을 가질 수 있다.

  • PDF