• Title/Summary/Keyword: hollow ratio

Search Result 316, Processing Time 0.026 seconds

The Development of a 100 Mpa Class Ultra-high Strength Centrifugal Molded Square Beam Design and Manufacturing Technology (100MPa급 초고강도 원심성형 각형보의 설계 및 제작기술 개발 )

  • Doo-Sung Lee;Sung-Jin Kim;Jeong-Hoi Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.4
    • /
    • pp.11-22
    • /
    • 2023
  • In this study, a structural concrete square beam was developed using the centrifugal molding technique. In order to secure the bending stiffness of the cross section, the hollow rate of the cross section was set to 10% or less. Instead of using the current poor mixture of concrete, a special formwork for producing a centrifugal square beam was manufactured, and a concrete mixing ratio with a high slump (150-200) and a design strength of 100 MPa or more was developed and applied. The produced centrifugally formed rectangular beams were subjected to performance tests according to the standard bending and shear test standards for centrifugally formed members. The static load test results for the four specimens exceeded both the nominal bending strength and nominal shear strength, which are design values through structural design, proving the structural reliability of the ultra-high-strength centrifugally formed square beam.

Clinical predictors of therapeutic laparotomy in anterior abdominal stab injuries: a multicenter study from low-income institutions in Ethiopia

  • Segni Kejela;Abel Hedato;Yeabsera Mekonnen Duguma;Meklit Solomon Gebremariam
    • Journal of Trauma and Injury
    • /
    • v.37 no.2
    • /
    • pp.140-146
    • /
    • 2024
  • Purpose: Despite the high incidence of abdominal stab injuries, the rate of nontherapeutic laparotomies and the predictors of therapeutic laparotomies have rarely been studied in low-income settings. Methods: This multicenter retrospective study involved three of the largest academic medical centers in central Ethiopia. All patients who sustained an anterior abdominal stab injury and underwent exploratory laparotomy, regardless of the intraoperative findings, were included over the 3-year course of the study. Results: Of the 117 patients who underwent exploratory laparotomy, 35 patients (29.9%) underwent nontherapeutic laparotomies. Three factors predicted therapeutic laparotomy: hollow viscus evisceration (adjusted odds ratio [AOR], 5.77; 95% confidence interval [CI], 1.16-28.64; P=0.032), localized and generalized peritonitis (AOR, 4.77; 95% CI, 1.90-11.93; P=0.001), and white blood cell count ≥11,500/mm3 (AOR, 2.77; 95% CI, 1.002-7.650; P=0.049). The overall positive predictive value of the therapeutic predictors was 80.2%, while the negative predictive value of all predictor-negative patients was 58.1%. The predictors would have prevented 51.4% of the nontherapeutic laparotomies. Conclusions: Close to one-third of the patients had a nontherapeutic laparotomy. The clinical predictors of therapeutic laparotomy were shown to have a high positive predictive value despite a lower negative predictive value. Further prospective studies that involve all patients who sustain anterior abdominal stab injuries are needed to potentially improve on the negative predictive value of the predictors suggested by our study.

Membrane Process Using Polysulfone Hollow Fiber Membranes for Vehicle Fuel Production from Bio-Methane Mixture (폴리설폰 중공사막 모듈을 이용한 자동차 연료용 고순도 바이오메탄 분리공정 연구)

  • Kim, Jee Sang;Kong, Chang In;Park, Bo Ryoung;Kim, Jeong-Hoon
    • Membrane Journal
    • /
    • v.24 no.3
    • /
    • pp.213-222
    • /
    • 2014
  • In this study, 2-stage recirculation membrane process was developed for purification of high purity bio-methane for the vehicle fuel application. Pure gas permeation and mixture gas permeation test were done as a function of methane content and pressure in the feed using polysulfone membrane modules. 2-stage membrane plant was designed, constructed in a food waste treatment cite. Dehumidification, dry desulfurization, and desiloxane plants are installed for the removal of $H_2O$, $H_2S$ and siloxane in the biogas. Permeation test were done with the pre-treated methane mixture in terms of methane purity and recovery by adjusting the ratio of membrane area (1:1, 1:3, 2:2) in the first and second membrane modules in the plant. When membrane area of 2 stage increased to $3m^2$ from $1m^2$ at 1-stage membrane area of $1m^2$, the feed rate and $CH_4$ recovery at 95% methane purity were increased from 47.1% to 92.5% respectively. When the membrane area increased two-fold (1:1 to 2:2), $CH_4$ recovery increased from 47.1% to 88.3%. When the feed flow rate was increased, in 1:3 ratio, final purity of the methane is reduced, the methane recovery is increased. When operating pressure was increased, the feed rate was increased and recovery was slightly decreased. From this result, membrane area, feed pressure and feed rate could be the important factor to the performance of the membrane process.

[ $CO_2$ ] Recovery from LNG-fired Flue Gas Using a Multi-staged Pilot-scale Membrane Plant (파일럿규모의 다단계 막분리 공정을 통한 LNG 연소 배가스로부터 이산화탄소의 회수연구)

  • Kim, Jeong-Hoon;Choi, Seung-Hak;Kim, Beom-Sik;Lee, Soo-Bok;Lee, Yong-Taek
    • Membrane Journal
    • /
    • v.17 no.3
    • /
    • pp.197-209
    • /
    • 2007
  • In this study, a multi-staged pilot-scale membrane plant was constructed and operated for the separation of $CO_2$ from LNG-fired boiler flue gas of 1,000 $Nm^3/day$. The target purity and recovery ratio of $CO_2$ required for the pilot plant were 99% and 90%, respectively. For this purpose, we previously developed the asymmetric polyethersulfone hollow fibers and evaluated the effects of operating pressure and feed concentration of $CO_2$ on separation performance[1,2]. The permeation data obtained were also analyzed in relation with the numerical simulation data using counter-current flow model[3,4]. Based on these results, we designed and prepared the demonstration plant consisting of dehumidification process and four-staged membrane process. The operation results using this plant were compared with the numerical simulation results on multi-staged membrane process. The experimental results matched well with the numerical simulation data. The concentration and the recovery ratio of $CO_2$ in the final stage permeate stream were ranged from $95{\sim}99%$ and $70{\sim}95%$, respectively, depending on the operating conditions. This study demonstrated the applicability of the membrane-based pilot plant for $CO_2$ recovery from flue gas.

Performance and Characterization of Ceramic Membrane by Phase Inversion-Extrusion Process with Polymer Binder Mixing (상전이-압출 알루미나 분리막 제조 공정에서 혼합 고분자 바인더 적용에 따른 성능 및 특성 평가)

  • Sojin Min;Ahrumi Park;Yongsung Kwon;Daehun Kim;You-In Park;Seong-Joong Kim;Seung-Eun Nam
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.439-446
    • /
    • 2023
  • Ceramic membranes are generally used for various industrial processes operating under extreme conditions because of its high thermal and chemical stability. However, due to the trade-off phenomenon of permeability and mechanical strength, preparation of high permeability-high strength membrane is necessary. In this study, the change in characteristics and performances of ceramic membranes was analyzed depending on the type of polymer binder and its mixing ratio. Because the solubility between solvent and polymer binder was higher in PSf (polysulfone) than in PES (polyethersulfone), the viscosity and discharge pressure of the PSf-based dope solution were higher than those of PES-based dope solution. When PSf was used as a polymer binder, ceramic membrane showed high mechanical strength and low water permeability due to the dense structure. On the other hand, in case of PES, the mechanical strength was slightly reduced and the water permeability was increased. It was confirmed that the optimum mixing ratio of the PSf and PES with high water permeability and mechanical strength was 9:1.

Spawning Site Characters in the Natural Environment of Bull-head Torrent Catfish, Ligbagrus obesus(Siluriformes: Amblycipitidae) in the Gosan Stream, Mangyeong River Water System, Korea (만경강 수계 고산천에 서식하는 퉁사리 Liobagrus obesus의 자연산란장 특성)

  • Kim, Hyeong-Su;Yang, Hyun;Hong, Yang-Ki
    • Korean Journal of Ichthyology
    • /
    • v.24 no.3
    • /
    • pp.183-190
    • /
    • 2012
  • The spawning site characters in the natural environment of bull-head torrent catfish, Liobagrus obesus, were investigated at the part of the Gosan stream in Korea from April to October 2010 and June 2011. The sex ratio of female to male was 1 : 1.02. Spawning season was from June to July with water temperature in approximately $23^{\circ}C$. The spawning sites were covered by the boulder used upper plate and were composed of gravel and sand. One male lies with the egg mass and guards the developing embryos in the hollow below the boulder. The environmental conditions of the spawning sites were $61.4{\pm}11.97$ (50~85) cm in depth, 0.58${\pm}0.067$ (0.48~0.72) m/sec in surface water velocity, $0.46{\pm}0.098$ (0.27~0.61) m/sec in middle water velocity, $0.27{\pm}0.083$ (0.14~0.41) m/sec in bottom water velocity. The boulder width as spawning sites was $26.2{\pm}5.32$ (20~38) cm in long axis, $20.5{\pm}2.97$ (16~25) cm in short axis and $11.1{\pm}4.02$ (5~19) cm in height. The hollow underneath the boulder was $9.8{\pm}2.32$ (6~14) cm in diameter and $2.8{\pm}1.10$ (1.5~5) cm in depth. The average number of eggs in ovary was $124{\pm}27.7$ (92~180). The matured egg size was $3.40{\pm}0.078$ (3.21~3.56) mm. The average number of spawning eggs in the spawning site was $99{\pm}12.9$ (81~122).

Properties of Temperature Reduction of Cooling Asphalt Pavements Using High-Reflectivity Paints (고반사 도료를 사용한 차열성 아스팔트 도로포장의 온도저감특성)

  • Hong, Chang Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.317-327
    • /
    • 2013
  • Air pollution and artificial heat of urban areas have caused the urban heat island in which asphalt pavements absorb solar heat during the daytime and release the heat at night. Hence, in order to improve the environment of urban areas, it is necessary to examine cooling pavements that can reduce heat on road pavements in urban areas. The application of temperature insulation paints on road pavements require to reduce black brightness for visibility, to increase the reflection rate of infrared light and minimize the reflection rate of visible light. In the study, one part of Acrylic-emulsion was used as a main binder, and the changes in black brightness and the changes of addition ratio (0%, 15%, 30%) of hollow ceramics, as well as kinds of paints (carbon black pigment, mixed mineral pigment) were selected as the main experimental factors. The performance of temperature reduction of cooling pavements was analyzed through the reflection rate of spectrum, the reflection rate of solar heat, and the lamp test. Abrasion resistance, UV accelerated weather resistance, and sliding resistance were tested in real situations. In addition, the performance of heat reduction of testing pavements covered with high-reflection paints was analyzed by using an infrared camera. As the test results, when using mixed mineral paints and hollow ceramic of 30%, the reflection rate of spectrum was 43% in the area of near-infrared ray and 17% in the area of visible light at black brightness of $L^*$=42.89 and the reflection rate of solar heat was 27.5%. Total color difference was ${\Delta}E$=0.27 in the test of UV Accelerated Weather Resistance, indicating almost no changes in color. BPN was more than 53 when scattering #2 and #4 silica sand of more than $0.12kg/m^2$. In Taber's abrasion resistance test, abrasion loss was up to 86.4mg at 500 rotations. The performance of heat reduction was evaluated using an infrared camera at the test section applying high-reflection paints to asphalt pavements, in which the results showed that the temperature was reduced by $12.7^{\circ}C$ on CI-30-40 cooling pavements ($L^*$=38.76) and by $14.2^{\circ}C$ on CI-30-60 cooling pavements ($L^*$=57.12).

A study on establishing asbestos analysis method using a transmission electron microscope with Energy dispersive X-ray analyzer (TEM-EDX) (에너지 분산 X선 분석장치가 장착된 투과전자현미경을 이용한 석면분석방법)

  • Han, Jeong Hee;Kim, Kwang Jin;Chung, Yong Hyun;Lee, Jun Yeon;Lee,, Yong;Chung, Ho Keun;Yu, Il Je
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.11 no.2
    • /
    • pp.102-110
    • /
    • 2001
  • To establish an accurate asbestos analysis method for workplace samples, chrysotile, amosite, crocidolite, tremolite, actinolite, and anthophyllite asbestos fibers were analyzed for their morphology, atomic content and electron diffraction patterns. The morphology of asbestos fiber was evaluated in $10,000{\times}$ magnification. The atomic contents was analyzed by X-ray analyzer (TEM-EDX). Asbestos fibers were further assessed using electron diffraction (ED) patterns to provide an additional criterion for classifying the asbestos fibers. Twenty asbestos fibers were initially randomly selected for morphological evaluation; based on an aspect ratio (length : diameter = 3:1). Then the fibers were determined for their EDX spectrums and ED patterns. Our results showed that only chrysotile fiber has a hollow tube structure to be distinguished from other asbestos fibers. Although asbestos fibers had similar morphology, they had different EDX spectrums and ED patterns. Our results on the atomic content of asbestos fibers were very similar to those of other researchers, but amosite and crocidolite had a little difference in atomic content compared with the results from other researchers. The difference may be due to the difference in equipment or asbestos sample selection. A study on asbestos samples from biological specimens to establish a criterion for determining occupational asbestos exposed diseases should be done in the near future.

  • PDF

Comparison of Anoxic/Oxic Membrane Bioreactor - Reverse Osmosis and Activated Sludge Process-Microfiltration-Reverse Osmosis Process for Advanced Treatment of Wastewater (폐수의 고도처리를 위한 무산소/호기형 분리막생물반응조 - 역삼투 공정과 활성슬러지공정 - 정밀여과 - 역삼투 공정의 비교)

  • Roh, Sung-Hee;Kim, Sun-Il;Quan, Hong-hua;Song, Yon-Ho
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.521-526
    • /
    • 2006
  • A membrane bioreactor (MBR) is an effective tool for wastewater treatment with recycling. MBR process has several advantages over conventional activated sludge process (ASP); reliability, compactness, and quality of treated water. The resulting high-quality and disinfected effluents suggest that MBR process can be suitable for the reused and recycling of wastewater. An anoxic/oxic (A/O) type MBR was applied to simultaneous removal of organics and nutrients in sewage. At first, the efficiency of submerged MBR process was investigated using a hollow fiber microfiltration membrane with a constant flux of $10.2L/m^2{\cdot}h$ at each solids retention time (SRT). Results showed that protein/carbohydrate (P/C) ratio increased and total extracellular polymeric substances (EPS) remained constant with SRT increased. Secondly, A/O type MBR with a reverse osmosis (RO) membrane was employed to treat the municipal wastewater. The performance of A/O type MBR-RO process is better for the treatment of organics and nutrients than ASP-MF-RO process in terms of consistent effluents quality.

Numerical Analysis for Separation of Methane by Hollow Fiber Membrane with Cocurrent Flow (병류흐름 중공사 분리막에 의한 메탄 분리 수치해석)

  • Lee, Seungmin;Seo, Yeonhee;Kang, Hanchang;Kim, Jeonghoon;Lee, Yongtaek
    • Korean Chemical Engineering Research
    • /
    • v.53 no.3
    • /
    • pp.295-301
    • /
    • 2015
  • A theoretical analysis was carried out to examine the concentration behavior of methane from a biogas using a polysulfone membrane. After the governing equations were derived for the cocurrent flow mode in a membrane module, the coupled nonlinear differential equations were numerically solved with the Compaq Visual Fortran 6.6 software. At the typical operating condition of mole fraction of 0.7 in a feed stream, the mole fraction of methane in the retentate increased to 0.76 while the normalized retentate flow rate to the feed flow rate decreased from 1 to 0.79. When either the mole fraction of methane in a feed increased or the pressure of the feed stream increased, the methane mole fraction in the retentate increased. On the other hand, it was found that as either the membrane area decreased or the ratio of the permeate pressure to the feed pressure increased, the methane mole fraction in the retentate decreased. In case that the stage cut increased, the methane mole fraction in the retentate increased while the recovery of methane slightly decreased.