• Title/Summary/Keyword: hollow ratio

Search Result 318, Processing Time 0.023 seconds

Experimental Study On Seismic Behavior Of Masonry Walls With Column (기둥 및 벽체가 보강된 조적벽체의 지진거동에 대한 실험적 연구)

  • Kikuchi, Kenji;Park, Kang-Geun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.2 s.20
    • /
    • pp.93-105
    • /
    • 2006
  • In order to investigate the effect of the height of application point of lateral loads and reinforcing steel bars in walls and columns in improving the seismic behavior of confined concrete block masonry walls, an experimental research program is conducted. A total of twelve one-half scale specimens are tested under repeated lateral loads. Specimens are tested to failure with increasing maximum lateral drifts while a vertical axial load was applied and maintained constant. The specimens adopted are two-dimensional (2D) hollow concrete block masonry walls with different parameters such as shear span ratio, inflection point and percent of reinforcement in confining columns and walls. Test results obtained for each specimen include cracking patterns, load-deflection curve, and strains in reinforcement and walls in critical locations. Analysis of test data showed that above parameters generate a considerable effect on the seismic performance of confined concrete block masonry walls.

  • PDF

Average Droplet Size Distribution of a GDI Spray by Simultaneous Fluorescence/Scattering Image Technique (형과/산란광 동시 측정에 의한 GDI 분무의 평균 입경 분포에 관한 연구)

  • Gwak, Su-Min;Ryu, Gyeong-Hun;Choe, Dong-Seok;Kim, Deok-Jul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.6
    • /
    • pp.868-875
    • /
    • 2001
  • The objective of this study is to investigate the average droplet size distributions of a GDI spray by simultaneous fluorescence/scattering image technique. GDI engine is recently very popular because of high engine efficiency and low emissions. However, the injectors must have good spray characteristics because the fuel is directly injected into the cylinder. The fuel mixtures used in this study were 2% of fluorobenzene, 9% of DEMA(diethyl-methyl-amine) and 89% of hexane by volume. The system for obtaining 2-D fluorescence/scattering images of fuel spray was constituted of a laser sheet, a doubling prism, optical filters, and an ICCD camera. Using the ratio of the fluorescence to the scattering intensities, SMD distributions were obtained. SMD measured by the technique was compared with that obtained by PDA. It was found that average droplet size was bigger at spray center in the early stage of injection and at the outer periphery of the spray in the late stage of injection.

A study on vibration characteristics and tuning of smart cantilevered beams featuring an electo-rheological fulid

  • Park, S.B.;Cheong, C.C.;Suh, M.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.1
    • /
    • pp.134-141
    • /
    • 1993
  • Electro-Rheological(ER) fluids undergo a phase-change when subjected to an external electic field, and this phase-change typically manifests itself as a many-order-of-magnitude change in the rheological behavior. This phenomenon permits the global stiffness and energy- dissipation properties of the beam structures to be tuned in order to synthesize the desired vibration characteristics. This paper reports on a proof-of-concept experimental investigation focussed on evaluation the vibration properties of hollow cantilevered beams filled with an ER fluid. and consequently deriving an empirical model for predicting field-dependent vibration characteristics. A hydrous-based ER fluid consisting of corn starch and silicone oil is employed. The beams are considered to be uniform viscoelastic materials and modelled as a viscously-damped harmonic oscillator. Natural frequency, damping ratio and elastic modulus are evaluated with respect to the electric field and compared among three different beams: two types of different volume fraction of ER fluid and one type of different particle concentration of ER fluid by weight. Transient and forced vibration responses are examined in time domain to demonstrate the validity of the proposed empirical model and to evaluate the feasibility of using the ERfluid as an actuator in a closed-loop control system.

  • PDF

Spontaneous Vesicle Formation in Aqueous Mixtures of Cationic Gemini Surfactant and Sodium Lauryl Ether Sulfate

  • Cheon, Ho-Young;Jeong, Noh-Hee;Kim, Hong-Un
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.1
    • /
    • pp.107-114
    • /
    • 2005
  • Molecular aggregates of surfactant molecules consisting of one or more bilayers arranged in a hollow, closed, usually spherical geometry are termed “esicles”or “iposomes” In recent years it has been found that in certain systems the vesicular structure forms spontaneously and is long lived, and it has been suggested that these structures may in fact constitute the equilibrium state in these cases (as is true of micelles) This paper deals with the mixed CMC, vesicles, phase behavior, phase transition, geometrical structure, their formation and characterization in the aqueous solutions of mixed cationic/anionic surfactants systems. TEM micrographs revealed that the vesicles were of spherical shape and that their size was of around 180 nm. The zeta potentials are positive at CGS1-rich regions and negative at SLES-rich regions. In the region where SLES/CGS1 (6/4), the zeta potentials are very small, implying that the vesicles at this surfactant ratio may be less stable. At other surfactant ratios, the vesicles are thought to be stable, supported by large absolute values of zeta potentials and little change in UV absorbance for several months.

The Study of Stiffness Evaluation Technique for L, T Shaped Joint Structures Using Normal Modes Analysis with Lumped Mass (모드해석을 이용한 L, T 자형 구조물의 결합 강성 평가 방법에 대한 연구)

  • Hur, Deog-Jae;Jung, Jae-Yup;Cho, Yeon;Park, Tae-Won
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.975-983
    • /
    • 1999
  • This paper describes the dynamic characteristics of the joint structures in case of using the simplified beam model in the F. E. analysis. The modeling errors, when replace the shell with the beam, are investigated through F. E. normal modes analysis. Normal mode analysis were performed to obtain the natural frequencies of the L and T shaped joints with various type of channels. The results were analyzed to access the effects of the models on the accuracy of F.E. analysis by identifying the geometric factors which cause the error. The geometric factors considered are joint angle, channel length, thickness and area ratio of the hollow section to the filled one. The joint stiffness evaluation technique is developed in this study using normal modes analysis with Lumped Mass. With this method, the progressively improved results of F. E. analysis are obtained using the simplified beam model. The static and normal modes analysis are performed with the joint stiffness values obtained by the Kazunori Shimonkakis' virtual stiffness method and the proposed method and these simplified modeling errors are compared.

  • PDF

Prediction of Welding Pressure in the Non Steady State Porthole Die Extrusion of Al7003 Tubes

  • Jo, Hyung-Ho;Lee, Jung-Min;Lee, Seon-Bong;Kim, Byung-Min
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.3
    • /
    • pp.36-41
    • /
    • 2003
  • This paper describes a numerical analysis of a non-steady state porthole die extrusion, which is useful for manufacturing long tubes with a hollow section. Materials divided through several portholes are gathered within a chamber and are then welded under high pressure. This weldability classifies the quality of tube products and is affected by process variables and die shapes. However, porthole die extrusion has been executed based on the experience of experts, due to the complicated die assembly and the complexity of metal flow. In order to better assist the design of die and to obtain improvement of productivity, non-steady state 3D FE simulation of porthole die extrusion is required. Therefore, the objective of this study is to analyze the behavior of metal flow and to determine the welding pressure of hot extrusion products under various billet temperatures, bearing length, and tube thickness by FE analysis. The results of FE analysis are compared with those of experiments.

Magnetron Sputtering Technology의 연구 및 개발 방향에 대한 동향

  • Park, Jang-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.95-95
    • /
    • 2012
  • 스터퍼링 기술이 1852년 Grove에 의해서 최초 발견되어 1979년 Chapin에 의해서 planar magnetron cathode 개발로 진공코팅기술의 새로운 영역을 열게 되어 현재까지 디스플레이, 반도체, 태양전지, 광학산업 및 전자부품 등 나노 산업에 필수적으로 적용되고 있다. 스퍼터링 입자는 운동량 전달에 의한 것으로 운동량을 갖는 나노 스퍼터링 입자는 기판에 대한 박막의 부착력이 우수하고 대면적에 균일하고 재현성 있게 성막되는 특징을 갖고 있다. 마그네트론 스퍼터링 기술이 산업에 응용되면서 주로 4분야에서 많은 연구, 개발이 되어져 왔다. 첫째는 타겟의 고순도 및 고밀도화와 더불어 가격이 고가로 됨에 따라 타겟 사용효율의 향상이다. 플라즈마를 발생시키는 캐소드의 자기회로를 1차원, 2차원 및 회전운동을 통해서 사용효율을 향상시키고 있다. 둘째는 기판에 대해서 박막특성이 균일하도록 코팅하는 것이다. 디스플레이에서는 글래스 기판이 대면적으로 됨에 따라서 핸들링이 어려워져 여러 개의 캐소드 자기회로를 선형적으로 이동시켜 박막두께분포를 최적화하며 반응성 가스를 사용해서 균일한 특성의 박막을 제작하는 경우에는 가스분사관과 배기펌프계의 기하학적 위치 및 가스 유동학적 해석이 필요하다. 셋째는 스퍼터링 입자의 이온화로 의한 박막의 특성향상과 반도체 trench의 높은 aspect ratio hole을 채우는 것이다. 이온화 방법으로는 inductively coupled plasma (ICP), microwave amplified (MA), high power impulse (HIPI), hollow cathode magnetron (HCM), self-sustained sputtering 등이 사용되어져 왔으며 최근에는(neutral beam-assisted sputtering (NBAS)에 의한 박막특성향상 방법이 발표되고 있다. 넷째는 플라즈마 및 박막두께 시뮬레이션에 대해서 많은 발표가 되고 있다. 본 발표에서는 상기의 4 분야를 포함한 향후 개발방향에 대해서 소개할 예정이다.

  • PDF

Characteristics of Kapok Fibers According to Various Pretreatment Conditions (전처리 처리 조건에 따른 케이폭 섬유의 특성)

  • Hong, Seok Il;Lee, Hee Dong;Shim, Jae Yun;Seo, Won Jin;Lee, Beom Soo
    • Textile Coloration and Finishing
    • /
    • v.26 no.3
    • /
    • pp.230-236
    • /
    • 2014
  • The kapok fibers which are the functional fiber materials having natural hollows are environment friendly materials the demand and interest of which are increasing. The kapok fibers are environment friendly and natural hollow fibers which are 5-8 times lighter than cottons and have excellent performances in thermo keeping property, air permeability, bulkiness and resilience. In this study, the pretreatment according to the dyeing behaviors of kapok fibers were studied. Pretreatment(scouring, bleaching) were a variety of conditions. Scouring and bleaching, images of changed surfaces and cross-sections and dyeing behaviors of the dye-o-meter according to the concentration measured in meters and compared. Although the final exhaustion ratio of the kapok fibers scoured with a high concentration recipe was almost as same as that of the kapok fibers bleached with a high concentration recipe, the initial absorption speed of the kapok fibers scoured with the high concentration recipe was faster than that of the kapok fibers bleached with the high concentration recipe.

Large Hydromagnetic Axisymmetric Instability of a Streaming Gas Cylinder Surrounded by Bounded Fluid with Non Uniform Field

  • Radwan, Ahmed Elazab;Elogail, Mostafa Abdelrahman;Elazab, Nasser Elsaid
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.4
    • /
    • pp.455-471
    • /
    • 2007
  • The magnetohydrodynamic axisymmetric instability of a streaming gas jet surrounded by bounded fluid with non-uniform field has been developed. The problem is formulated, solved and the boundary conditions are applied across the interfaces. The eigenvalue relation is derived and discussed analytically and the results are confirmed numerically. Some reported works are recovered as limiting cases from the present general results. The streaming has a destabilizing effect for all short and long wavelengths. The capillary force is stabilizing for short wavelengths but it is destabilizing for long wavelengths. The axial magnetic fields interior the gas and fluid media are stabilizing. The transverse field is destabilizing for all wavelengths. The radii ratio of the gas and fluid cylinders plays an important role for stabilizing the model and made it more realistic one than the full liquid jet or/and the ordinary hollow jet. The numerical analysis clarify the stable and unstable domains based on different values of the various parameters of the problem.

  • PDF

An Experimental Study on the Optimization of Performance Parameter for Membrane Based Dehumidification and Air Conditioning System (분리막 제습공조 시스템의 성능변수 최적화를 위한 실험적 연구)

  • Jang, Jeachul;Kang, Eun-Chul;Jeong, Siyoung;Park, Seong-Ryong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.2
    • /
    • pp.75-80
    • /
    • 2016
  • There are three types of dehumidification systems : refrigeration dehumidification method, desiccant dehumidification method and hybrid dehumidification method. The first method involves removing moisture by condensation below the dew point, the second method involves absorption by a desiccant material and the last is an integration method. However, the refrigeration dehumidification system consumes too much power and controlling the humidity ratio is difficult. The desiccant dehumidification system uses less power but it has problems of environmental pollution. The hybrid dehumidification system has the disadvantage of a high initial cost. On the other hand, the energy consumption of the membrane based dehumidification system is lower than for the refrigeration dehumidification system. Also, it is an environmentally friendly technology. In this study, the performance parameters are evaluated for the dehumidification system using a hollow fiber membrane. Available area, duct side dry-bulb temperature, sweep gas flux (flow rate) and LMPD (Log Mean Pressure Difference) were used as the performance parameters.