• Title/Summary/Keyword: hollow microspheres

Search Result 34, Processing Time 0.018 seconds

Effect of Additive Composition on Flexural Strength of Cullet-Loess Tile Bodies (첨가제의 조성이 폐유리-점토 타일의 곡강도에 미치는 영향)

  • Lee, Young-Il;Eom, Jung-Hye;Kim, Young-Wook;Song, In-Hyuck
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.416-422
    • /
    • 2013
  • Cullet-loess tile bodies are successfully fabricated using cullet, loess, hollow microspheres, and sintering additives (borosilicate glass frit, boric acid, or fumed silica) as starting materials. The effects of the additive composition and sintering temperature on the sintered density and flexural strength of the cullet-loess tile bodies are investigated. The sintered density of the cullet-loess tile bodies increases with an increase in the sintering temperature as a result of the enhanced densification of pore walls through the viscous flow of a liquid phase formed from the glass frit and sintering additives. The flexural strength of the cullet-loess tile bodies increases with increases in the sintering temperature and the cullet content in the starting composition. A maximal flexural strength of 40 MPa is obtained in cullet-loess tile bodies sintered with glass frit at $800^{\circ}C$ in air.

Flexural Strength of Macroporous Silicon Carbide Ceramics (거대기공 다공질 탄화규소 세라믹스의 꺾임강도)

  • Lim, Kwang-Young;Kim, Young-Wook;Song, In-Hyuck;Bae, Ji-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.360-367
    • /
    • 2011
  • Macroporous silicon carbide (SiC) ceramics were fabricated by powder processing and polymer processing using carbon-filled polysiloxane as a precursor. The effects of the starting SiC polytype, template type, and template content on porosity and flexural strength of macroporous SiC ceramics were investigated. The ${\beta}$-SiC powder as a starting material or a filler led to higher porosity than ${\alpha}$-SiC powder, owing to the impingement of growing ${\alpha}$-SiC grains, which were transformed from ${\beta}$-SiC during sintering. Typical flexural strength of powder-processed macroporous SiC ceramics fabricated from ${\alpha}$-SiC starting powder and polymer microbeads was 127 MPa at 29% porosity. In contrast, that of polymer-processed macroporous SiC ceramics fabricated from carbon-filled polysiloxane, ${\beta}$-SiC fillers, and hollow microspheres was 116MPa at 29% porosity. The combination of ${\alpha}$-SiC starting powder and a fairly large amount (10 wt%) of $Al_2O_3-Y_2O_3$ additives led to macroporous SiC ceramics with excellent flexural strength.

Growth mechanism of three dimensionally structured TiO2 thin film for gas sensors (가스 감응용 3차원 구조체 TiO2 박막 성장기구)

  • Moon, Hi-Gyu;Yoon, Seok-Jin;Park, Hyung-Ho;Kim, Jin-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.110-115
    • /
    • 2009
  • Polystyrene (PS) microspheres were used to good advantage as a template material to prepare macroporous $TiO_2$ thin films. This is enabled to run the thermal decomposition of the PS without the collapsing of the 3-D macroporous framework during the calcination step. $TiO_2$ thin films were deposited onto the colloidal templated substrates at room temperature by RF sputtering, and then samples were thermally treated at $450^{\circ}C$ for 40.min in air to remove the organic colloidal template and induce crystallization of the $TiO_2$ film. The macroporous $TiO_2$ thin film exhibited a quasi-ordered partially hexagonal close-packed structure. Burst holes, estimated to be formed during PS thermal decomposition, are seen as the hemisphere walls. the inner as well as the outer surfaces of the hollow hemispheres formed by the method of thermal decomposition can be easily accessed by the diffusing gas species. As a consequence, the active surface area interacting with the gas species is expected to be enlarged about by a factor of fourth as large as compared to that of a planar films. Also the thickness at neighboring hemisphere could be controlled a few nm thickness. If the acceptor density becomes as large that depletion width reaches those thickness, the device is in the pinch off-situation and a strong resistance change should be observed.

Synthesis of Hyaluronic Acid Microsphere Crosslinked with Polyethylene Glycol Diglycidyl Ether Prepared by A Simple Fluidic Device

  • Yuk, Sujeong;Jeong, Dayeon;Lee, Yongjun;Lee, Deuk Yong
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.251-258
    • /
    • 2021
  • Hyaluronic acid (HA) microspheres (MSs) crosslinked with polyethylene glycol diglycidyl ether (PEGDE) are prepared using a simple fluidic device (SFD) to investigate the optimized parameters. A solution mixture of PEGDE in 2-methyl-1-propanol was prepared as a continuous phase in SFD. HA solutions of 1 wt% concentration were introduced into SFD as a discontinuous phase. The HA solution prepared by stirring for more than 48 h exhibited spherical MSs at the needle tip inside the ring cap. As the flow rate of the continuous phase increased from 0.7 to 1.9 mL/min, the diameter of the MS decreased from 173±36 ㎛ to 129±13 ㎛. Although the PEGDE concentration in the range of 0.2 to 1.8 vol% did not affect the diameter of the MS, the microstructure of MS, consisting of inner hollow void and wall, was changed. The inner void and wall size decreased and increased from 79.5 ㎛ to 57.2 ㎛ and from 10.3 ㎛ to 21.4 ㎛, respectively, with increasing PEGDE concentration from 0.2 vol% to 1.8 vol%. FT-IR peaks located around 2867 cm-1 and 1088 cm-1 indicated that the HA MS prepared at different PEGDE concentrations were chemically crosslinked. The HA MSs containing different PEGDE concentrations exhibited quantitative cell viability of more than 98%. L-929 cells adhered well to the HA MSs and proliferated continuously with increasing culture time to 48 h regardless of PEGDE concentration, implying that the HA MSs are clinically safe and effective.