• Title/Summary/Keyword: hole transfer layer

Search Result 65, Processing Time 0.028 seconds

Emission Properties of Red OELD with $Znq_2$ and dye (Znq2와 dye에 의한 적색 유기 전계 발광 소자의 발광특성)

  • Cho, M.J.;Choi, W.J.;Park, C.H.;Lim, K.J.;Park, S.K.;Kim, H.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1466-1468
    • /
    • 2001
  • For the full color organic electro-luminescent device, essentially, red, green, and blue emissions are required. But red emission is not to reach minimum level of practical use 31[lm/W]. In order to optimize color purity and power consumption requirements, it is important for the materials development efforts to search for improvements in red emission effisiency. In this study, the bis(8-oxyquinolino)zinc II ($Znq_2$) were synthesized successfully from zinc chloride($ZnCl_2$) as a initial material. Then, we fabricated red organic electroluminescent device with a dye(DCJTB)-doped and inserted $Znq_2$ between emission layer and cathode layer for increasing EL efficiency. The hole transfer layer is a N,N'-diphenyl-N,N'-bis-(3-methyl phenyl) -1,1'-diphenyl-4.4'-diamine(TPD), and the host material of emission layer is $Znq_2$. For the inserting of $Znq_2$, efficiency increased.

  • PDF

Effects of Doping in Organic Electroluminescent Devices Doped with a Fluorescent Dye

  • Kang, Gi-Wook;Ahn, Young-Joo;Lee, Chang-Hee
    • Journal of Information Display
    • /
    • v.2 no.3
    • /
    • pp.1-5
    • /
    • 2001
  • The effect of doping on the energy transfer and charge carrier trapping processes has been studied in organic light-emitting diodes (OLEDs) doped with a fluorescent laser dye. The devices consisted of N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1-biphenyl-4,4'-diamine (TPD) as a hole transporting layer, tris(8-hydroxyquinoline) aluminum ($Alq_3$) as the host, and a fluorescent dye, 4-dicyanomethylene-2-methyl-6-[2-(2,3,6,7-tetrahydro-1 H,5H-benzo[i,j]quinolizin-8-yl) vinyl]-4H-pyran) (DCM2) as the dopant. Temperature dependence of the current-voltage-luminescence (I-V-L) characteristics, the electroluminescence (EL) and photoluminescence (PL) spectra are studied in the temperature ranging between 15 K and 300 K. The emission from DCM2 was seen to be much stronger compared with the emission from $Alq_3$, indicative of efficient energy transfer from $Alq_3$ to DCM2. In addition, the EL emission from DCM2 increasd with increasing temperature while the emission from the host $Alq_3$ decreased. The result indicates that direct charge carrier trapping becomes efficient with increasing temperature. The EL emission from DCM2 shows a slightly sublinear dependence on the current density, implying the enhanced quenching of excitons at high current densities due to the exciton-exciton annihilation.

  • PDF

Numerical Analysis of Heat Transfer Characteristics of Ribbed Channels with Different Film Cooling Hole Position (필름 냉각을 위한 리브드 채널의 홀 위치에 따른 열전달 특성 수치 해석)

  • Park, Jee Min;Moon, Joo Hyun;Lee, Hyung Ju;Lee, Seong Hyuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.69-76
    • /
    • 2018
  • The present study analyzed the effect of film hole position of 45 degree ribbed cooling channel on film cooling performance of gas turbine blades. We also investigated the influence of the ribs under the fixed blowing ratio. Three-dimensional numerical model was constructed and extensive simulation was conducted using the commercial code (Fluent ver. 17.0) under steady-state condition. Base on the simulation results, We investigated the cooling effectiveness, flow velocity, streamline, and pressure coefficient. Moreover, We analyzed the effect of cooling hole position on ejection of the secondary flow caused by the rib structure. From the results, It was found that internal flow of the cooling channel forms a vortex pair in the counterclockwise from the top side, and clockwise from the bottom side. For the channels with ribs, the vortex flow generated by the ribs caused a higher pressure difference near the hole outlet, resulting in at least 12% higher cooling effectiveness than the channel without ribs. Additionally, when the hole is located on the left side of the ribbed channel (Rib-Left), it can be found that the secondary flow generated by the ribs hits against wall surface near the hole to form a flow in the direction of the hole inclination angle. Therefore, It is considered that the region where the cooling gas discharged to the blade surface stays in the main flow boundary layer is wider than the other cases. In this case, The largest pressure coefficient difference was observed near the outlet of the hole, and as a result, the discharge of the cooling gas was accelerated and the cooling efficiency was slightly increased.

Fabrication of Free-Standing Three-Dimensional Block Copolymer Patterns on Substrate (블록 공중합체 3차원 패턴의 제조 방법 및 그 구조 특성)

  • Choi, Hong Kyoon
    • Korean Journal of Materials Research
    • /
    • v.29 no.12
    • /
    • pp.804-811
    • /
    • 2019
  • As the importance of three-dimensiona (3D) nano patterns and structures has recently emerged, interest in the study of 3D structures of block copolymers has increased. However, most existing studies on block copolymer 3D patterns on substrates are limited to simple 3D structures such as a multi-layered forms. In this study, we propose an experimental method for realizing free-standing 3D block copolymer patterns on substrates using an e-beam lithographic template and film transfer method. The block copolymer 3D structure formed in wide hole templates are similar to simple multi-layered structures; however, as the width of the hole template become narrower, more complex block copolymer 3D structures are formed in which the upper and lower layer structures are interconnected. Furthermore, we introduce a method to fabricate novel block copolymer structures in which the 2D planar structures are connected to 3D complex structures. Proposed 3D block copolymer fabrication method provides a framework for generation of unconventional 3D structures of block copolymer, which can be useful for next generation 3D devices.

Preparation and Properties of Organic Electroluminescent Devices (유기 전계발광소자의 제작과 특성 연구)

  • 노준서;장호정
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.1
    • /
    • pp.9-13
    • /
    • 2002
  • Recently, Organic electroluminescent devices (OELDs) have been demonstrated the medium sized full color display with effective multi-layer thin films. In this study, the multi-layer OELDs were prepared on the patterened ITO (indium tin oxide)/glass substrates by the vacuum thermal evaporation method. The low molecule compounds such as $Alq_3$(trim-(8-hydroxyquinoline)aluminum) and CTM (carrier transfer material) as the electron transport and injection layers as well as TPD (triphenyl-diamine) and CuPc (copper phthalocyanine) as the hole transport and injection layers were used. The luminance was rapidly increased above the threshold voltage of 10 V. The luminance and emission spectrum for the OELDs samples with $A1/CTM/Alq_3$/TPD/1TO structures were found to be 430 cd/$m^2$and 512 nm at 17 V showing green color emission. In contrast, the samples with $Li-A1/Alq_3$/TPD/CuPC/1TO multi-structures showed 508 nm in emission spectrum and 650 cd/$m^2$at 17 V in the luminance. The increment of luminance may be ascribed to the improved efficiency of recombination in the region of the emission layers by the deposition of CuPc as hole injection layer and the low work function of the Li-Al electrode compared to the Al electrode.

  • PDF

Skin Friction Mobilized on Pack Micropiles Subjected to Uplift Force (인발력을 받는 팩마이크로파일의 주면마찰력)

  • Hong, Won-Pyo;Cho, Sam-Deok;Choi, Chang-Ho;Lee, Choong-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.6
    • /
    • pp.19-29
    • /
    • 2012
  • Pack micropiles were recently developed to improve pile capacity of general micropiles. Pack micropiles were made by warping thread bar or steel pipe of general micropile by geotexlile pack and grouting inside the pack with pressure. According to the pressure, the boring hole could be enlarged. A series of pile uplift tests were performed on three micropiles. Two out of the three piles were the pack micropiles and the other was the general micropile, in which a thread bar was used in the boring hole. According to the pressure applied to the pack micropiles, the diameter of boring hole was enlarged from 152 mm to 220 mm. Unit skin friction mobilized on side surfaces of micropiles increased with displacement of pile head and reached on a constant value, which represents that the relative displacement between piles (or thread bar) and soils was reached on critical state. And the uplift resistance of pack micropile was higher than that of general micropile. Two reasons can be considered: One is that the frictional surface increases due to enlarging diameter of boring holes and the other is that the unit skin friction could increase due to compressing effect of surrounding soils by soil displacement as much as the enlarging volume of boring hole. The compression effect appeared at deeper layer rather than surface layer. The unit skin friction mobilized on micropiles with small diameter was higher than the ones on large bored piles.

Grain Growth Revealed by Multi-wavelength Analysis of Non-axisymmetric Substructures in the Protostellar Disk WL 17

  • Han, Ilseung;Kwon, Woojin;Aso, Yusuke
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.59.2-59.2
    • /
    • 2020
  • Disks around protostars are the birthplace of planets. The first step toward planet formation is grain growth from ㎛-sized grains to mm/cm-sized grains in a disk, particularly in dense regions. In order to study whether grains grow and segregate at the protostellar stage, we investigate the ALMA Band 3 (3.1 mm) and 7 (0.87 mm) dust continuum observations of the protostellar disk WL 17 in ρ Ophiuchus L1688 cloud. As reported in a previous study, the Band 3 image shows substructures: a narrow ring and a large central hole. On the other hand, the Band 7 image shows different substructures: a non-axisymmetric ring and an off-center hole. The two-band observations provide a mean spectral index of 2.3, which suggests the presence of mm/cm-sized large grains. Its non-axisymmetric distribution may imply dust segregation between small and large grains. We perform radiative transfer modeling to examine the size and spatial distributions of dust grains in the WL 17 disk. The best-fit model suggests that large grains (>1 cm) exist in the disk, settling down toward the midplane, whereas small grains (~10 ㎛) well mixed with gas are distributed off-center and non-axisymmetrically in a thick layer. The low spectral index and the modeling results suggest that grains rapidly grow at the protostellar stage and that grains differently distribute depending on sizes, resulting in substructures varying with observed wavelengths. To understand the differential grain distributions and substructures, we discuss the effects of the protoplanet(s) expected inside the large hole and the possibility of gravitational instability.

  • PDF

Effect on Efficiency of the OLED depending on Thickness Variation of EIL $Cs_2CO_3$ (전자 주입층 $Cs_2CO_3$ 두께 변화에 따른 OLED의 효율에 미치는 영향)

  • Han, Hyeon-Seok;Kim, Chang-Hoon;Kang, Yong-Gil;Kim, Gwi-Yeol;Kim, Tae-Wan;Hong, Jin-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1438-1439
    • /
    • 2011
  • In this paper, we studied effects on the efficiency, according to thickness of the electron injection layer(EIL) for improving efficiency of Organic Light Emitting Diodes(OLEDs). For the first time, after confirming the optimum thickness of the EIL material $Cs_2CO_3$, we designed OLED devices having a structure of ITO/TPD/$Alq_3/Cs_2CO_3$/Al. And we manufactured devices applying for the optimum thickness of the material in the simulation with thermal evaporating method. And we investigated how the EIL material $Cs_2CO_3$ effects on efficiency of OLEDs in the EIL. As the result, because the EIL material $Cs_2CO_3$ reduces energy potential barrier of the EIL, it facilitated the electron transfer. And, as blocking the hole transfer contributes to an increased recombination, we confirmed that the efficiency of OLEDs increased. And compared to the device without using the EIL material, the device using thickness 1.0 nm of $Cs_2CO_3$ in the EIL shows the excellent efficiency. Therefore, we confirmed that the luminance and the external quantum efficiency increase about 600% and 500% respectively.

  • PDF

Spin-polarized energy-gap opening in asymmetric bilayer graphene nanoribbons

  • Kim, Gyu-Bong;Ji, Seung-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.442-442
    • /
    • 2011
  • Electronic and magnetic properties of bilayer zigzag graphene nanoribbon (bZGNR) are studied using pseudopotential density functional method. The edge atoms in the top and bottom layers of bZGNR make a weak hybridization, which leads to electronic structures different from monolayer ZGNR. For asymmetric bZGNR, where the top and bottom layers have different widths, one edge is pinched by the interlayer bonding and the other sustains antiferromagnetic ordering. A small amount of charge transfer occurs from narrower to wider layer, producing spin-polarized electron and hole pockets. External electric field produces asymmetric energy-gap opening for each spin component, inducing half-metallicity in bZGNR.

  • PDF

Mechanism of workfunction modification on HAT-CN/Cu(111) interface: ab initio study

  • Kim, Ji-Hoon;Park, Yong-Sup;Kwon, Young-Kyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.357-357
    • /
    • 2010
  • Using ab initio density functional theory, we study the structural and electronic properties of interface between Cu surface and highly electron withdrawing hexaazatriphenylene-hexanitrile (HAT-CN) known as an efficient hole injection layer for organic light emitting diodes (OLEDs). We calculate the equilibrium geometries of the interface with different HAT-CN coverages. Usually, some of C-N bonds located at the edge of the HAT-CN molecule are deformed toward Cu atoms resulting in the reconstruction of Cu surface. By analyzing the electron charge and the potential distributions over the interface, we observe the formation of surface dipoles, which modify the work function at the interface. Such dipole formation is attributed to two origins, one of which is a geometrical nature and the other is a bond dipole. The former is related to structural deformation mentioned above, whereas the latter is due to charge transfer between organic and metal surface.

  • PDF