• 제목/요약/키워드: hole diameter ratio

검색결과 174건 처리시간 0.034초

콘크리트 원주공시체에서 나선철근량과 중공크기에 관한 연구 (Effect of spiral reinforcement ratio and center-hole size of cylinder of concrete)

  • 김민수;김진근;유영섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.101-106
    • /
    • 2001
  • This paper presents experimental results for the confining characteristics of cylinder with center-hole and spiral reinforcements. The experiments have been conducted for the specimens with primary variables i.e., spiral reinforcement ratio and diameter of center-hole which affect the compressive strength and stress-strain relationship. Through this research, it was found that the compressive strength and ductility were increased with the ratio of spiral reinforcement because the lateral expansion of the concrete inside the spiral was restrained by the spiral, but dependent on the size of center-hole.

  • PDF

신경회로망기법을 사용한 원통형 막냉각 홀의 최적설계 (Design Optimization of a Cylindrical Film-Cooling Hole Using Neural Network Techniques)

  • 이기돈;김광용
    • 대한기계학회논문집B
    • /
    • 제32권12호
    • /
    • pp.954-962
    • /
    • 2008
  • This study presents a numerical procedure to optimize the shape of cylindrical cooling hole to enhance film-cooling effectiveness. The RBNN method is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis of fluid flow and heat transfer with shear stress transport turbulent model. The hole length-to-diameter ratio and injection angle are chosen as design variables and film-cooling effectiveness is considered as objective function which is to be maximized. Twelve training points are obtained by Latin Hypercube Sampling for two design variables. In the sensitivity analysis, it is found that the objective function is more sensitive to the injection angle of hole than the hole length-to diameter ratio. Optimum shape gives considerable increase in film-cooling effectiveness.

가로세로비 1:1.5를 가진 한국 전통 지연의 방구멍에 대한 연구 (A Study on the Center Hole of Korean Traditional Kite with Aspect Ratio 1:1.5)

  • 사종엽
    • 한국항공우주학회지
    • /
    • 제48권4호
    • /
    • pp.243-254
    • /
    • 2020
  • 한국 전통 지연은 장방형으로 그 가운데 방구멍을 가진 특이한 형태를 갖고 있다. FLUENT 코드를 사용하여, 가로세로비 1:1.5인 한국 전통 지연에 작용하는 공기역학적 힘들을 수치적으로 계산하였다. 다양한 직경의 방구멍에 대하여 연의 비행을 시뮬레이션하여, 방구멍의 역할과 방구멍 크기에 따른 영향을 조사하였다. 방구멍은 연싸움에서 연실의 빠른 되감기로 인한 장력의 급격한 상승을 완화시켜 주는 역할을 함으로써, 연실을 더 빨리 되감을 수 있게 한다. 방구멍의 적절한 직경은 가로 폭의 1/3이다.

Simulation of fracture mechanism of pre-holed concrete model under Brazilian test using PFC3D

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher
    • Smart Structures and Systems
    • /
    • 제22권6호
    • /
    • pp.675-687
    • /
    • 2018
  • In the previous studies on the porous rock strength the effect of pore number and its diameter is not explicitly defined. In this paper crack initiation, propagation and coalescence in Brazilian model disc containing a single cylindrical hole and or multiple holes have been studied numerically using PFC3D. In model with internal hole, the ratio of hole diameter to model diameter was varied between 0.03, 0.17, 0.25, 0.33, and 0.42. In model with multiple hole number of holes was different in various model, i.e., one hole, two holes, three holes, four holes, five holes, six holes, seven holes, eight holes and nine holes. Diameter of these holes was 5 mm, 10 mm and 12 mm. The pre-holed Brazilian discs are numerically tested under Brazilian test. The breakage load in the ring type disc specimens containing an internal hole with varying diameters is measured. The mechanism of cracks propagation in the wall of the ring type specimens is also studied. In the case of multi-hole Brazilian disc, the cracks propagation and b cracks coalescence are also investigated. The results shows that breaking of the pre-holed disc specimens is due to the propagation of radially induced tensile cracks initiated from the surface of the central hole and propagating toward the direction of diametrical loading. In the case of disc specimens with multiple holes, the cracks propagation and cracks coalescence may occur simultaneously in the breaking process of model under diametrical compressive loading. Finally the results shows that the failure stress and crack initiation stress decreases by increasing the hole diameter. Also, the failure stress decreases by increasing the number of hole which mobilized in failure. The results of these simulations were comprised with other experimental and numerical test results. It has been shown that the numerical and experimental results are in good agreement with each other.

보링커터의 세장비에 따른 구멍 정밀도 변화에 관한 연구 (A Study on the Change in Hole Precision with Slenderness Ratio of Boring Cutter)

  • 천세호
    • 한국기계가공학회지
    • /
    • 제16권5호
    • /
    • pp.7-12
    • /
    • 2017
  • It is assumed that the buckling and cutting conditions depending on the slenderness ratio will affect the machining quality of the rotary boring tool mounted on a milling machine. In this study, the boring cutter was designed and fabricated to precisely create the Ø30 hole. Through the performance evaluation, the accuracy of the hole according to the slenderness ratio and cutting conditions was analyzed, and the following conclusions were obtained. The higher the RPM, the smaller the change in the working diameter, and the smaller the hole. Next, the smaller the slenderness ratio, the smaller the change in straightness due to the change in cutting conditions. Finally, the slenderness ratio also affects the tendency for changes in the concentricity. The larger the slenderness ratio, the more sensitive the concentricity to changes in cutting conditions.

수직분사 막냉각구멍 내부에서의 3차원 유동특성 (Three-dimensional flow within a film-cooling hole normally oriented to the main flow)

  • 이상우;주성국
    • 대한기계학회논문집B
    • /
    • 제21권9호
    • /
    • pp.1185-1197
    • /
    • 1997
  • Three-dimensional flow within a film-cooling hole, which is normally oriented to the main flow, has been measured by using a straight five-hole probe for the blowing ratios of 1.0 and 2.0. The length-to-diameter ratio of the injection hole is fixed to be 1.0 throughout the whole experiments. The result shows that the secondary flow within the hole is strongly affected by the main flow and flow separation at the hole inlet. The higher blowing ratio provides less influence of the main flow on the injectant flow. The three-dimensional flow at the hole exit is considerably altered due to the strong interaction between the injectant and main flow. The aerodynamic loss produced inside the injection hole is mainly attributed to the inlet flow separation.

Hole-Tone의 발생과 원형제트의 불안정 특성 (Instability Characteristics of Circular Jets Producing Hole-Tones)

  • 임정빈;권영필
    • 소음진동
    • /
    • 제9권5호
    • /
    • pp.1005-1011
    • /
    • 1999
  • Generation of hole-tones and the instability of circular impinging jets are investigated based on the frequency characteristics and the radiated sound field. The experiment is carried out with varying hole sizes, jet speeds and impinging distances. It is found that hole-tones occur by both the low-speed laminar jet and the high-speed turbulent jet, but not by the transient jet, while plate-tones without holes are produced only in the high-speed turbulent impinging jet. When the diameter ratio of the hole to the nozzle is nearly one, hole-tones occur most easily. At low speed, it is found that hole-tones are due to the symmetrical unstable jet and the impinging distance decreases with jet speed. And the Strouhal number and the sound pressure level increase with jet speed. At high speed, hole-tones show the same characteristics as plate-tones. It is found that the ratio of the convection speed varies with the Strouhal number and the jet speed.

  • PDF

알루미늄 판재의 고 세장비 피어싱가공을 위한 작업변수의 영향 (The Influences of Process Parameters in Piercing with a High Aspect Ratio for Thick Aluminum Sheet)

  • 김종길;김종봉;김종호
    • 소성∙가공
    • /
    • 제23권1호
    • /
    • pp.23-28
    • /
    • 2014
  • The aspect ratio of a hole is defined as the ratio of the thickness to the diameter of the sheet metal. Most holes in the sheet metal industry are made by piercing. However, for thick sheets, which have an aspect ratio greater than 2, a machining process like drilling instead of piercing is usually used to make holes. In the current study, piercing, which is a shearing process, is evaluated to punch a hole with a high aspect ratio by using a newly designed die set-up. The piercing die was manufactured to prevent the punch from buckling and also to improve the alignment between the die components. An aluminum alloy sheet was selected for the experiments. The influence of several process parameters such as sheet thickness, clearance and stripping force were investigated. Experimentally, a hole with an aspect ratio of 5 was pierced. The resulting hole had a clean surface and the dimensional accuracy of pierced hole was considerably improved with decreasing clearance between punch and die. It is also shown that the larger penetration depth of the effective sheared surface can be achieved for high aspect ratio piercing relative to conventional piercing with a low aspect ratio.

일방향 CFRP 복합재료의 핀 베어링강도에 관한 시험편 치수의 영향 (Effect of Specimen Geometries on the Pin Bearing Strength of Unidirectional CFRP Composites)

  • 전진탁;김재동;고성위
    • 수산해양기술연구
    • /
    • 제33권4호
    • /
    • pp.346-351
    • /
    • 1997
  • The pin bearing strength is one of the most important design parameters for mechanical joints composed of fiber reinforced composites. Thus the effect of the edge distance and the width of specimen on the pin-bearing strength of unidirectional CFRP composites were experimentally investigated in this paper. As results, the failure modes and the pin bearing strength of mechanical joints turned out to depend on the edge distance and also the width of specimen. The failure of specimen with low ratio of width to hole diameter was caused by the net tension from the hole boundary, on the other hand, the failure of specimen with low ratio of edge distance to hole diameter was caused by the shear-out. The bearing strength in case of the failure by shear-out was quite lower than that in case of failure by net tension.

  • PDF

초단펄스 전해 국부화를 이용한 미세구멍 가공 (Localized Electro-chemical Micro Drilling Using Ultra Short Pulses)

  • 안세현;류시형;최덕기;주종남
    • 한국정밀공학회지
    • /
    • 제20권8호
    • /
    • pp.213-220
    • /
    • 2003
  • By the localization of electro-chemical dissolution region, we succeeded in a few micrometer size hole drilling on stainless steel with the radial machining gap of about 1 ${\mu}{\textrm}{m}$. Tens of nanosecond duration voltage pulses were applied between WC micro-shaft and stainless steel in the 0.1 M $H_2SO_4$ solution. Pt balance electrode was used to drill the high aspect ratio micro-hole without generation of Cr oxide layer on the machined surface. The effects of applied voltage, pulse duration, and pulse period on localization distance were investigated according to machining time. We suggested the taper reduction technique especially brought up on blind-hole machining. High quality micro-holes with 8 ${\mu}m$ diameter with 20 ${\mu}m$ depth and 12 ${\mu}m$ diameter with 100 ${\mu}m$ depth were drilled on 304 stainless steel foil. The various hole shapes were also produced including stepped holes and taper free holes.