• 제목/요약/키워드: hole blocking

검색결과 87건 처리시간 0.033초

LTE 펨토셀 네트워크를 위한 적응적 주기의 MLB 알고리즘 (Adaptive Periodic MLB Algorithm for LTE Femtocell Networks)

  • 김우중;이정윤;서영주
    • 한국통신학회논문지
    • /
    • 제38C권9호
    • /
    • pp.764-774
    • /
    • 2013
  • 4세대 셀룰러 네트워크의 데이터양이 증가하면서, 사업자들은 이를 수용하기 위한 네트워크의 용량 문제에 직면하였다. 따라서, 이 문제를 해결하고자 저렴하고 낮은 전력으로 동작하는 펨토셀이 제안되었는데, 이것은 실내 음영지역의 해소 및 사용자의 서비스 품질을 향상시키는 장점을 갖는다. 그러나 펨토셀 네트워크는 소수의 셀에 많은 부하 (Load)가 집중될 가능성이 있다. 이를 해결하고자, 부하 분산 (Load balancing) 알고리즘 중 하나인 MLB (Mobility Load Balancing) 알고리즘이 제안되었다. 이 알고리즘은 부하 분산을 위해 셀 외곽의 사용자를 인접한 셀로 강제 핸드오버한다. 본 논문에서는 주기적으로 동작하는 MLB 알고리즘에서, 주기가 변했을 때 네트워크 성능 지표들이 어떻게 변화하는지를 확인한다. 실험 결과, 짧은 주기로 동작할 때 데이터 차단율이 낮고, 긴 주기로 동작할 때 핸드오버의 빈도가 낮으며 시간당 처리량 (Throughput)이 높은 것을 확인하였다. 이 결과를 바탕으로, 본 논문에서는 적응적 (Adaptive) 주기의 MLB 알고리즘을 제안하였다. 제안된 알고리즘은 긴 주기와 짧은 주기로 동작하는 알고리즘의 장점을 모두 포함하는 것을 실험적으로 확인하였다.

이중구조 라이닝의 배수공 막힘에 따른 수리-역학적 상호작용 (Hydraulic and structural interaction of a double-lined tunnel lining due to drainhole blockings)

  • 신종호;남택수;채성은;윤재웅
    • 한국터널지하공간학회 논문집
    • /
    • 제11권3호
    • /
    • pp.243-254
    • /
    • 2009
  • 지하수 작용과 관련하여 현장에서 발생하는 문제는 1차 라이닝의 투수계수의 저하에 따른 영향뿐만 아니라 배수재의 투수성능에 따른 복합적인 요인의 상호 작용의 결과로 볼 수 있다. 본 연구에서는 이중구조라이닝 연계 FEM 해석을 통해 지반-라이닝-배수재의 투수영향에 중점을 두고 배수시스템의 성능저하에 따른 터널구조물에 미치는 영향을 조사하였다. 해석 결과 배수장애가 발생할 경우의 수압증가는 2차라이닝에 심각한 구조적 부담을 줄 수 일음이 확인되었다. 배수공이 모두 폐색되는 경우 비배수 터널이 되어 수직으로 뜨는 형태의 거동을 보였다. 그리고 배수공의 폐색이 비대칭적으로 발생하는 경우 터널 축방향 비틂 거동을 야기하여 2차라이닝 구조에 심각한 영향을 미칠 수 있음이 확인되었다.

150kW급 열병합발전 하이브리드 시스템 최적화 연구 (Optimization of 150kW Cogeneration Hybrid System)

  • 최재준;김혁주;정대헌;박화춘
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.340-344
    • /
    • 2008
  • The importance of the more efficient cogeneration system is emphasized. Also the more clean energy is needed at recent energy system. The cogeneration system using Lean burn engine is more preferred to the system using Rich burn engine because of the electrical efficiency. Although the cogeneration system using Lean burn engine is economically preferred, because of the NOx emission level, the system using Rich burn engine with 3-way catalyst can only be used in Korea. The NOx regulation level is 50ppm at oxygen level 13%. The cogeneration hybrid system using Lean burn engine is up to be optimized because of the large amount of the extra-fuel at the after-burner system. The after-burner system at different concept was applied. The reduction time for the activation temperature of the DeNOx catalyst was achieved by making a hole between the combustor and boiler. Because of the lowered fuel consumption, the lowered temperature level was optimized by blocking the hole of the boiler The optimized cogeneration hybrid system consumes $76Nm^3/h$ LNG to produce 150kW electricity compared to before optimization $103Nm^3/h$ LNG. The system was accurately evaluated and the result is following ; 90% total efficiency, below 10 ppm NOx, 50ppm CO, 25ppm HC. The cogeneration hybrid system can meet the current NOx level and exhaust gas regulation. It can achieve the clean combustion gas and efficient cogeneration system.

  • PDF

Light-emitting devices with polymer-organic heterostructure

  • Do, Lee-Mi;Hwang, Do-Hoon;Choi, Kang-Hoon;Lee, Hyang-Mok;Jung, Sang-Don;Zyung, Taehyoung
    • Journal of the Optical Society of Korea
    • /
    • 제1권2호
    • /
    • pp.116-119
    • /
    • 1997
  • Highly quantum efficient and multi-color emissible polymer light emitting devices have been realized utilizing poly (1-dodecyloxy-4-methyl-1, 3-phenylene)(2, 5"-terthienylene)(hereafter, mPTTh polymer) as an emitting layer and tris(8-hydroxyquinoline) aluminum (Alq3) as an electron transport layer. A single layer EL device of mPTTh polymer emits orange-colored light. EL efficiency increases as the thickness of Alq3 layer increases, but the emission color becomes visually broad when the Alq3 layer thickness is greater than 30nm since the relative peak intensity of green EL from Alq3 layer grows. EL color is changed from orange to greenish orange as the thickness of Alq3 layer grows. EL color is changed from orange to greenish orange as the thickness of Alq3 layer increases. EL efficiency of the double layer device was greatly enhanced by 3000 times compared with that of a single layer device. Alq3 layer in device acts as a hole blocking electron transporting layer and an emitting layer as a function of the thickness of Alq3 layer.ayer.

전자 주입층 $Cs_2CO_3$ 두께 변화에 따른 OLED의 효율에 미치는 영향 (Effect on Efficiency of the OLED depending on Thickness Variation of EIL $Cs_2CO_3$)

  • 한현석;김창훈;강용길;김귀열;김태완;홍진웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1438-1439
    • /
    • 2011
  • In this paper, we studied effects on the efficiency, according to thickness of the electron injection layer(EIL) for improving efficiency of Organic Light Emitting Diodes(OLEDs). For the first time, after confirming the optimum thickness of the EIL material $Cs_2CO_3$, we designed OLED devices having a structure of ITO/TPD/$Alq_3/Cs_2CO_3$/Al. And we manufactured devices applying for the optimum thickness of the material in the simulation with thermal evaporating method. And we investigated how the EIL material $Cs_2CO_3$ effects on efficiency of OLEDs in the EIL. As the result, because the EIL material $Cs_2CO_3$ reduces energy potential barrier of the EIL, it facilitated the electron transfer. And, as blocking the hole transfer contributes to an increased recombination, we confirmed that the efficiency of OLEDs increased. And compared to the device without using the EIL material, the device using thickness 1.0 nm of $Cs_2CO_3$ in the EIL shows the excellent efficiency. Therefore, we confirmed that the luminance and the external quantum efficiency increase about 600% and 500% respectively.

  • PDF

버퍼층으로 사용한 PVK의 농도 변화에 따른 유기 발광 소자의 전압-전류-휘도 특성 (Current-Voltage-Luminance Characteristics of Organic Light-Emitting Diodes with a Variation of PVK Concentration Used as a Buffer Layer)

  • 김상걸;홍진웅;김태완
    • 한국응용과학기술학회지
    • /
    • 제19권1호
    • /
    • pp.68-72
    • /
    • 2002
  • We have seen the effects of buffer layer in organic light-emitting diodes(OLEDs) using poly(N-vinylcarbazole)(PVK) depending on a concentration of PVK. Polymer PVK buffer layer was made using spin casting technique. Two device structures were fabricated; one is ITO/TPD/$Alq_{3}$/Al as a reference, and the other is ITO/PVK/TPD/$Alq_{3}$/Al to see the effects of buffer layer in organic light-emitting diodes. Current-voltage-luminance characteristics and an external quantum efficiency were measured with a variation of spin-casting rpm speeds and PVK concentration. We have obtained an improvement of external quantum efficiency by a factor of four when the PVK concentration is 0.1wt% is used. The improvement of efficiency is expected due to a function of hole-blocking of PVK in OLEDs.

폐색 저감형 산기관의 개발 및 적용성 평가 (A study on the Development and Evaluation of Sludge Occlusion Reduced Diffuser)

  • 김영훈;김관엽;이의종;남종우;이창하;전민정;김형수
    • 상하수도학회지
    • /
    • 제25권1호
    • /
    • pp.41-49
    • /
    • 2011
  • The diffuser which is conventionally adapted to MBR, has problem that decreasing the cleaning effect of membrane module by inflexible air supply due to the occlusion of sludge from diffuser hole. To solve this problem, diffuser structure of submerged module should be improved to discharge sludge which is flow into the diffuser for prevent occlusion in the diffuser. In this study, the structure of the diffuser was reformed to open lower part for preclusion the blocking. And the outlet diameter of the diffuser was drawn through the condition for the depth of water and air rate, to prevent air-leak condition of improved diffuser. Moreover, application is evaluated by comparing test with occlusion effect of the conventional and improved diffuser. From the results, air-water boundary changes are steady with changes of water depth and it shows linear relation about air rate. By using this linear numerical formula, the height of diffuser's outlet can be decided. Also, it displays that it can prevent the occlusion effect during the comparing test. Hereafter, if this diffuser is applied to practical MBR process, the occlusion problem of diffuser will be disappeared.

Electrical Characterization of Ultrathin Film Electrolytes for Micro-SOFCs

  • Shin, Eui-Chol;Ahn, Pyung-An;Jo, Jung-Mo;Noh, Ho-Sung;Hwang, Jaeyeon;Lee, Jong-Ho;Son, Ji-Won;Lee, Jong-Sook
    • 한국세라믹학회지
    • /
    • 제49권5호
    • /
    • pp.404-411
    • /
    • 2012
  • The reliability of solid oxide fuel cells (SOFCs) particularly depends on the high quality of solid oxide electrolytes. The application of thinner electrolytes and multi electrolyte layers requires a more reliable characterization method. Most of the investigations on thin film solid electrolytes have been made for the parallel transport along the interface, which is not however directly related to the fuel cell performance of those electrolytes. In this work an array of ion-blocking metallic Ti/Au microelectrodes with about a $160{\mu}m$ diameter was applied on top of an ultrathin ($1{\mu}m$) yttria-stabilized-zirconia/gadolinium-doped-ceria (YSZ/GDC) heterolayer solid electrolyte in a micro-SOFC prepared by PLD as well as an 8-${\mu}m$ thick YSZ layer by screen printing, to study the transport characteristics in the perpendicular direction relevant for fuel cell operation. While the capacitance variation in the electrode area supported the working principle of the measurement technique, other local variations could be related to the quality of the electrolyte layers and deposited electrode points. While the small electrode size and low temperature measurements increaseed the electrolyte resistances enough for the reliable estimation, the impedance spectra appeared to consist of only a large electrode polarization. Modulus representation distinguished two high frequency responses with resistance magnitude differing by orders of magnitude, which can be ascribed to the gadolinium-doped ceria buffer electrolyte layer with a 200 nm thickness and yttria-stabilized zirconia layer of about $1{\mu}m$. The major impedance response was attributed to the resistance due to electron hole conduction in GDC due to the ion-blocking top electrodes with activation energy of 0.7 eV. The respective conductivity values were obtained by model analysis using empirical Havriliak-Negami elements and by temperature adjustments with respect to the conductivity of the YSZ layers.

SnO2 기능성 박막을 이용한 ZnO 기반의 투명 UV 광검출기 (ZnO Based All Transparent UV Photodetector with Functional SnO2 Layer)

  • 이경남;이주현;김준동
    • 전기학회논문지
    • /
    • 제67권1호
    • /
    • pp.68-74
    • /
    • 2018
  • All transparent UV photodetector based on ZnO was fabricated with structure of NiO/ZnO/$SnO_2$/ITO by using RF and DC magnetron sputtering system. ZnO was deposited with 4 inch ZnO target (purity 99.99%) for a quality film. In order to build p-n junction up, p-type NiO was formed on n-type ZnO by using reactive sputtering method. The indium tin oxide (ITO) which is transparent conducting oxide (TCO) was applied as a transparent electrode for transporting electrons. To improve the UV photodetector performance, a functional $SnO_2$ layer was selected as an electron transporting and hole blocking layer, which actively controls the carrier movement, between ZnO and ITO. The photodetector (NiO/ZnO/$SnO_2$/ITO) shows transmittance over 50% as similar as the transmittance of a general device (NiO/ZnO/ITO) due to the high transmittance of $SnO_2$ for broad wavelengths. The functional $SnO_2$ layer for band alignment effectively enhances the photo-current to be $15{\mu}A{\cdot}cm^{-2}$ (from $7{\mu}A{\cdot}cm^{-2}$ of without $SnO_2$) with the quick photo-responses of rise time (0.83 ms) and fall time (15.14 ms). We demonstrated the all transparent UV photodetector based on ZnO and suggest the route for effective designs to enhance performance for transparent photoelectric applications.

A Stable and Efficient Host Material Having Tetraphenylsilane for Phosphorescent Organic Light Emitting Diodes

  • Park, Hyung-Dol;Kang, Jae-Wook;Lee, Deug-Sang;Kim, Ji-Whan;Jeong, Won-Ik;Park, Young-Seo;Lee, Se-Hyung;Go, Kyung-Moon;Lee, Jong-Soon;Kim, Hyong-Jun;Kim, Jang-Joo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.503-505
    • /
    • 2008
  • A host material containing tetraphenylsilane, 9-(4-triphenylsilanyl-(1,1'4,1")-terphenyl-4"-yl)-9H-cabazole (TSTC), was synthesized for green phosphorescent organic emitting diodes. $Ir(ppy)_3$ based OLEDs using TSTC host and DTBT (2,4-diphenyl-6-(4'yl)-1,3,5-triazine) hole blocking layer (HBL) showed the maximum external quantum efficiency of 19.8 %, the power efficiency of 59.4 lm and high operational stability with a half lifetime of 160,000 h at an initial luminance of $100\;cd/m^2$.

  • PDF