• Title/Summary/Keyword: hofmeister effects

Search Result 5, Processing Time 0.245 seconds

Effect of Additives on the Cloud Point of Polyethylene Glycols

  • Han, Suk-Kyu;Jhun, Byung-Hak
    • Archives of Pharmacal Research
    • /
    • v.7 no.1
    • /
    • pp.1-9
    • /
    • 1984
  • Polyethylene glycol 20, 000 and 6, 000 were found to have an upper consolute temperature, called "cloud point", and the effects of various additives on the polythylene glycols were investigated in this study. Electrolytes lowered the cloud point in proportion to their concentrations through dehydration and electrostriction. It was found that anions played a more important role than cations and the effects of both the cations and the anions clearly followed the classical Hofmeister series. However, the Schultze Hardy rule holds for the effect of anions, and fails for the effect of cations. Salts of large polarizable anions such as iodide and thiocynate rather raised the cloud point, and their effects were ascribed to the fact that they break the water structure and weaken hydrophobic bonding of the polyxyethylene moiety. Nitrates of polyvalent cations also raised the cloud point. This was ascribed to the complex formation between the polyvalent cations and ether oxygens of the polyoxyethylenes. This explained the failure 'of the Schultz-Hardy rule for cations. Uncharged aromatic compounds drastically lowered the clound point, while aliphatic alcohols slightly lowered the cloud point, This result suggests that there might be some interaction between ether oxygens and aromatic nucleus.c nucleus.

  • PDF

Dehydration and pore swelling effects on the transfer of PEG through NF membranes

  • Escoda, Aurelie;Bouranene, Saliha;Fievet, Patrick;Deon, Sebastien;Szymczyk, Anthony
    • Membrane and Water Treatment
    • /
    • v.4 no.2
    • /
    • pp.127-142
    • /
    • 2013
  • In order to investigate the significance of "salting-out" and "pore swelling" effects on the nanofiltration of neutral solutes, rejection properties of two NF ceramic and polymeric membranes were studied with single polyethyleneglycol (PEG) solution and mixed PEG/inorganic electrolyte solutions. For both membranes, the rejection rate of PEG was found to decrease significantly in the presence of ions. In the case of the ceramic membrane (rigid pores), this phenomenon was imputed to the sole partial dehydration of PEG molecules induced by the surrounding ions. This assumption was confirmed by the lowering of the PEG rejection rates which followed the Hofmeister series. Experimental data were used to compute the resulting decrease in the Stokes radius of PEG molecules in the presence of the various salts. Concerning the polymeric membrane, the decrease in the rejection rate was found to be systematically higher than for the ceramic membrane. The additional decrease was then ascribed to the swelling of the pores. The experimental data of rejection rates were then used to compute the variation in the mean pore radius in the presence of the various salts. The pore swelling phenomenon due to accumulation of counterions inside pores was supported by electrokinetic charge density measurements.

The Potentiometric Studies on the Effects of Various Functional Groups in Disiloxane as an Anion-Selective Ionophore

  • Jung, Hyo-Jin;Lee, Myong-Euy;Lim, Chae-Yun;Paeng, Ki-Jung
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.1
    • /
    • pp.57-62
    • /
    • 2005
  • The potentiometric responses for various anions are investigated with membrane electrode (membrane 1) based on 1,3-diethyl-1,3-dihydroxy-1,3-bis(2-dimethylaminomethyl ferrocenyl) disiloxane. The nitrate ion-selective electrode based on compound 1 gave a good Nernstian response of 58.18 mV per decade for nitrate with the detection limit of −e5.66 of log [NO3−e]. Compound 1 has all those functional groups and the other two compounds have less functional group of ferrocenyl or ferrocenyl and hydroxide, respectively. Even though, potentiometric response to anions was excellent at pH 5, the selectivity pattern for all three membrane electrode based on series of disiloxane is almost like Hofmeister sequence at pH 5. However, the membrane electrode 1-3 exhibited very different response to anions at pH 7. In this pH, NH2 is not protonated and ionophore may act as neutral carrier. Hydrogen bond may enhance the responsibility to hydrogen acceptors and intramolecular electro-active site may increase the permeability of analyte to ionophore in membrane.

Transdermal Permeation-enhancing Activities of some Inorganic Anions

  • Ko, Young-Il;Kim, Sung-Su;Han, Suk-Kyu
    • Archives of Pharmacal Research
    • /
    • v.18 no.4
    • /
    • pp.231-236
    • /
    • 1995
  • Effects of sodium salts of various monovalent inorganic anions on transdermal permeation of salicylic acid were investigated. In in-vitro experiment using a Franz-type diffusion cell and excisicylic acid were investigated. In-vitro experiment using a Franze-type diffusion cell and excised mouse skin, the permeation-enhancing activities of the sodium salts of inoraganic anions were rougly proportional to lyotropic Hofmeister serlling abilities of the anions l F/sup -/

  • PDF

Effects of concentrations and types of neutral salts on the foaming properties of sodium caseinate (중성염의 종류 및 농도가 sodium caseinate의 거품성에 미치는 영향)

  • Yang, Seung-Taek;Park, Hyung-Sun
    • Applied Biological Chemistry
    • /
    • v.36 no.6
    • /
    • pp.434-439
    • /
    • 1993
  • To investigate the effects of neutral salts on the foaming properties of sodium caseinate, turbidity, surface tension, absolute viscosity, foaming ability and foam stability of the caseinate solutions(5%, w/v) with added NaF, $Na_2SO_4$, NaCl, $NaNO_3$, and NaSCN at concentrations of 0.1, 0.5, 1.0, 1.5 and 2.0 M were examined. NaCl and $NaNO_3$ improved the foaming ability compared to sodium caseinate without salt, and also $Na_2SO_4$ and NaF did the foaming ability at the concentrations of 0.1M and 0.5M, while NaSCN did not improve the foaming ability. For foaming ability optimal concentrations of the salts were 0.5, 1.5, and 1.0 M in $Na_2SO_4$, NaCl, and NaSCN, respectively. Additions of $Na_2SO_4$, NaF and $NaNO_3$ at 0.5 M concentrations improved the foam stability of sodium caseinate by 825%, 615%, and 53% compared to control, while those of NaSCN reduced foam stability.

  • PDF