• 제목/요약/키워드: histone gene

Search Result 233, Processing Time 0.023 seconds

Histone Deacetylase Inhibitor Stimulate CYP3A4 Proximal Promoter Activity in HepG2 Cells

  • Kim Ja Young;Ahn Mee Ryung;Kim Dae-Kee;Sheen Yhun Yhong
    • Archives of Pharmacal Research
    • /
    • v.27 no.4
    • /
    • pp.407-414
    • /
    • 2004
  • The expression of CYP3A4 gene is induced by a variety of structurally unrelated xenobiotics including the antibiotic rifampicin, pregnenolone 16-carbonitrile (PCN), and endogenous hormones, that might mediate through steroid and xenobiotic receptor (SXR) system. The molecular mechanisms underlying regulation of CYP3A4 gene expression have not been understood. In order to gain the insight of the molecular mechanism of CYP3A4 gene expression, study has been undertaken to investigate if the histone deacetylation is involved in the regulation of CYP3A4 gene expression by proximal promoter in human hepatoma HepG2 cells. Also we have investigated to see if SXR is involved in the regulation of CYP3A4 proximal promoter activity in human hepatoma HepG2 cells. HepG2 cells were transfected with a plasmid PCYP3A4-Luc containing ${\~}1kb$ of the CYP3A4 proximal promoter region (-863 to +64 bp) in front of a reporter gene, luciferase, in the presence or absence of pSAP-SXR. In HepG2 cells, CYP3A4 inducers, such as rifampicin, PCN and RU486 showed minimal stimulation of CYP3A4 proximal promoter activity in the absence of SXR and histone deacetylase (HDAC) inhibitors. 4-Dimethylamino-H-[4-(2-hydroxycarbamoylvinyl)benzyl]benzamide (IN2001), a new class HDAC inhibitor significantly increased CYP3A4 proximal promoter activity over untreated control cells and rifampicin concomitant treatment with IN2001 increased further CYP3A4 proximal promoter activity that was stimulated by IN2001 The results of this study demon-strated that both HDAC inhibitors and SXR are essential to increase of CYP3A4 proximal promoter activity by CYP3A4 inducers such as PCN, rifampicin, and RU486. Especially SXR seems to be important for the dose dependent response of CYP3A4 inducing chemicals to stimulate CYP3A4 proximal promoter activity. Also this data suggested that HDAC inhibitors seemed to facilitate the CYP3A4 proximal promoter to be activated by chemicals.

Oxidative Stress, Chromatin Remodeling and Gene Transcription in Inflammation and Chronic Lung Diseases

  • Rahman, Irfan
    • BMB Reports
    • /
    • v.36 no.1
    • /
    • pp.95-109
    • /
    • 2003
  • Inflammatory lung diseases are characterized by chronic inflammation and oxidant/antioxidant imbalance. The sources of the increased oxidative stress in patients with chronic inflammatory lung diseases such as asthma and chronic obstructive pulmonary disease (COPD) derive from the increased burden of inhaled oxidants, and from the increased amounts of reactive oxygen species (ROS) generated by several inflammatory, immune and various structural cells of the airways. Increased levels of ROS produced in the airways is reflected by increased markers of oxidative stress in the airspaces, sputum, breath, lungs and blood in patients with lung diseases. ROS, either directly or via the formation of lipid peroxidation products such as 4-hydroxy-2-nonenal may play a role in enhancing the inflammation through the activation of stress kinases (JNK, MAPK, p38) and redox sensitive transcription factors such as NF-${\kappa}B$ and AP-1. Recent evidences have indicated that oxidative stress and pro-inflammatory mediators can alter nuclear histone acetylation/deacetylation allowing access for transcription factor DNA binding leading to enhanced pro-inflammatory gene expression in various lung cells. Understanding of the mechanisms of redox signaling, NF-${\kappa}B$/AP-1 regulation, the balance between histone acetylation and deacetylation and the release and expression of pro- and anti-inflammatory mediators may lead to the development of novel therapies based on the pharmacological manipulation of antioxidants in lung inflammation and injury. Antioxidants that have effective wide spectrum activity and good bioavailability, thiols or molecules which have dual antioxidant and anti-inflammatory activity, may be potential therapeutic agents which not only protect against the direct injurious effects of oxidants, but may fundamentally alter the underlying inflammatory processes which play an important role in the pathogenesis of chronic inflammatory lung diseases.

Euchromatin histone methyltransferase II (EHMT2) regulates the expression of ras-related GTP binding C (RRAGC) protein

  • Hwang, Supyong;Kim, Soyoung;Kim, Kyungkon;Yeom, Jeonghun;Park, Sojung;Kim, Inki
    • BMB Reports
    • /
    • v.53 no.11
    • /
    • pp.576-581
    • /
    • 2020
  • Dimethylation of the histone H3 protein at lysine residue 9 (H3K9) is mediated by euchromatin histone methyltransferase II (EHMT2) and results in transcriptional repression of target genes. Recently, chemical inhibition of EHMT2 was shown to induce various physiological outcomes, including endoplasmic reticulum stress-associated genes transcription in cancer cells. To identify genes that are transcriptionally repressed by EHMT2 during apoptosis, and cell stress responses, we screened genes that are upregulated by BIX-01294, a chemical inhibitor of EHMT2. RNA sequencing analyses revealed 77 genes that were upregulated by BIX-01294 in all four hepatic cell carcinoma (HCC) cell lines. These included genes that have been implicated in apoptosis, the unfolded protein response (UPR), and others. Among these genes, the one encoding the stress-response protein Ras-related GTPase C (RRAGC) was upregulated in all BIX-01294-treated HCC cell lines. We confirmed the regulatory roles of EHMT2 in RRAGC expression in HCC cell lines using proteomic analyses, chromatin immune precipitation (ChIP) assay, and small guide RNA-mediated loss-of-function experiments. Upregulation of RRAGC was limited by the reactive oxygen species (ROS) scavenger N-acetyl cysteine (NAC), suggesting that ROS are involved in EHMT2-mediated transcriptional regulation of stress-response genes in HCC cells. Finally, combined treatment of cells with BIX-01294 and 5-Aza-cytidine induced greater upregulation of RRAGC protein expression. These findings suggest that EHMT2 suppresses expression of the RRAGC gene in a ROS-dependent manner and imply that EHMT2 is a key regulator of stress-responsive gene expression in liver cancer cells.

Evidence of an Epigenetic Modification in Cell-cycle Arrest Caused by the Use of Ultra-highly-diluted Gonolobus Condurango Extract

  • Bishayee, Kausik;Sikdar, Sourav;Khuda-Bukhsh, Anisur Rahman
    • Journal of Pharmacopuncture
    • /
    • v.16 no.4
    • /
    • pp.7-13
    • /
    • 2013
  • Objectives: Whether the ultra-highly-diluted remedies used in homeopathy can effectively bring about modulations of gene expressions through acetylation/deacetylation of histones has not been explored. Therefore, in this study, we pointedly checked if the homeopathically-diluted anti-cancer remedy Condurango 30C (ethanolic extract of Gonolobus condurango diluted $10^{-60}$ times) was capable of arresting the cell cycles in cervical cancer cells HeLa by triggering an epigenetic modification through modulation of the activity of the key enzyme histone deacetylase 2 vis-a-vis the succussed alcohol (placebo) control. Methods: We checked the activity of different signal proteins (like $p21^{WAF}$, p53, Akt, STAT3) related to deacetylation, cell growth and differentiation by western blotting and analyzed cell-cycle arrest, if any, by fluorescence activated cell sorting. After viability assays had been performed with Condurango 30C and with a placebo, the activities of histone de-acetylase (HDAC) enzymes 1 and 2 were measured colorimetrically. Results: While Condurango 30C induced cytotoxicity in HeLa cells in vitro and reduced HDAC2 activity quite strikingly, it apparently did not alter the HDAC1 enzyme; the placebo had no or negligible cytotoxicity against HeLa cells and could not alter either the HDAC 1 or 2 activity. Data on $p21^{WAF}$, p53, Akt, and STAT3 activities and a cell-cycle analysis revealed a reduction in DNA synthesis and G1-phase cell-cycle arrest when Condurango 30C was used at a 2% dose. Conclusion: Condurango 30C appeared to trigger key epigenetic events of gene modulation in effectively combating cancer cells, which the placebo was unable to do.

Structural Characteristics of Two Wheat Histone H2A Genes Encoding Distinct Types of Variants and Functional Differences in Their Promoter Activity

  • Huh, Gyung-Hye;Iwabuchi, Masaki
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1996.07a
    • /
    • pp.26-38
    • /
    • 1996
  • To investigate the regulation of plant histone H2A gene expression, we isolated two H2A genes (TH254 and TH274) from wheat, which encode different types of variants. Both genes had an intron in the coding region. In the promoters, some characteristics sequences, such as Oct and Nona motifs, which are conserved among plant histone genes were also found, and they were located in a short region (about 120 bp) upstream from the putative TATA box. Analyses of promoter activity with H2A-GUS fusion genes in the transient system using tobacco protoplasts revealed novel types of positive cis-acting sequences in the TH254 promoter: a direct repeat of a 13-bp sequence (AGTTACATTATTG) and a stretch composed of an AT-rich sequence (ATATAGAAAATTAAAA) and a G-box (CACGTG). A quantitative S1 assay of the mRNA amounts from the TH254/GUS and TH274/GUG chimeric genes in stably transformed and cell cycle-synchronized tobacco cell lines showed that the promoters of both genes contained at least one cis-acting element responsible for S phase-specific expression. Histochemical analysis of transgenic tobacco plants carrying the chimeric genes showed that the promoters of the two H2A genes were both active in developing seedlings and flower organs but regulated in different manner.

  • PDF

Environmental Pollutants and Epigenetics (환경오염 물질과 에피제네틱스)

  • Park, Sung-Kyun;Lee, Sun-Dong
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.5
    • /
    • pp.343-354
    • /
    • 2009
  • Since Barker found associations between low birth weight and several chronic diseases later in life, the hypothesis of fetal origins of adult disease (aka, Barker Hypothesis) and epigenetics have been emerging as a new paradigm for geneenvironment interaction of chronic disease. Epigenetics is the study of heritable changes in gene silencing that occur without any change in DNA sequence. Gene expression can be regulated by several epigenetic mechanisms, including DNA methylation and histone modifications, which may be associated with chronic conditions, such as cancers, cardiovascular disease, and type-2 diabetes. One carbon metabolism which involves the transfer of a methyl group catalyzed by DNA methyltransferase is an important mechanism by which DNA methylation occurs in promoter regions and/or repetitive elements of the genome. Environmental factors may induce epigenetic modification through production of reactive oxygen species, alteration of methyltransferase activity, and/or interference with methyl donors. In this review, we introduce recent studies of epigenetic modification and environmental factors, such as heavy metals, environmental hormones, air pollution, diet and psychosocial stress. We also discuss epigenetic perspectives of early life environmental exposure and late life disease occurrence.

Epigenetic regulation of long noncoding RNA UCA1 by SATB1 in breast cancer

  • Lee, Jong-Joo;Kim, Mikyoung;Kim, Hyoung-Pyo
    • BMB Reports
    • /
    • v.49 no.10
    • /
    • pp.578-583
    • /
    • 2016
  • Special AT-rich sequence binding protein 1 (SATB1) is a nuclear matrix-associated DNA-binding protein that functions as a chromatin organizer. SATB1 is highly expressed in aggressive breast cancer cells and promotes growth and metastasis by reprograming gene expression. Through genome-wide cross-examination of gene expression and histone methylation, we identified SATB1 target genes for which expression is associated with altered epigenetic marks. Among the identified genes, long noncoding RNA urothelial carcinoma-associated 1 (UCA1) was upregulated by SATB1 depletion. Upregulation of UCA1 coincided with increased H3K4 trimethylation (H3K4me3) levels and decreased H3K27 trimethylation (H3K27me3) levels. Our study showed that SATB1 binds to the upstream region of UCA1 in vivo, and that its promoter activity increases with SATB1 depletion. Furthermore, simultaneous depletion of SATB1 and UCA1 potentiated suppression of tumor growth and cell survival. Thus, SATB1 repressed the expression of oncogenic UCA1, suppressing growth and survival of breast cancer cells.