• Title/Summary/Keyword: histone deacetylase 8

Search Result 35, Processing Time 0.026 seconds

Use of Cellulose and Recent Research into Butyrate (섬유소의 이용과 butyrate의 최근 연구)

  • Yeo, Tae Jong;Choi, In Soon;Cho, Kwang Keun
    • Journal of Life Science
    • /
    • v.22 no.11
    • /
    • pp.1571-1586
    • /
    • 2012
  • On earth, there are about 5,400 kinds of mammals, of which about 1,000 kinds are herbivores. Among herbivores, about 250 kinds are known to be ruminants. As for cattle and sheep, which are ruminants, fermentation takes places mainly in their rumen; in contrast, for pigs and men, which are non-ruminants, fermentation takes place mainly in their caecum, colon, and rectum. As for the kind and dominance of rumen microorganisms, Bacteroidetes account for 51% and Firmicutes for 43%. As for the dominance of the large intestine microorganisms in men, Firmicutes account for 65% and Bacteroidetes for 25%. Cell wall components are decomposed by microorganisms, and short chain fatty acids (SCFAs) are generated through fermentation; the ratio of acetate, propionate, and butyrate generate is 60:25:15. Butyrate absorbed through the primary butyrate transporter MCT1 (mono carboxylate transports-1) in the intestines activates such SCFA receptors as GPR43 and GPR41. Butyrate has a strong anti-tumorigenic function. Butyrate is characterized by the fact that it has an effect on many cancer cells, contributes to the coordination of functions in the cells, and induces cancer apoptosis. Butyrate activates caspase but inhibits the activity of HDAC (histone deacetylase), so as to induce apoptosis. In addition, it increases p53 expression, so as to induce cell cycle arrest and apoptosis. Anti-inflammation actions of SCFA include the reduction of IL-8 expression in intestinal epithelial cells, the inhibition of NO synthesis, and the restraint of the activity of NF-${\kappa}B$ (nuclear factor ${\kappa}B$), so as to suppress the occurrence of cancers caused by inflammation. Butyrate plays an important role in maintaining physiological functions of intestinal mucous membranes and is used as a cure for inflammatory bowel disease (IBD).

A New Cell Counting Method to Evaluate Anti-tumor Compound Activity

  • Wang, Xue-Jian;Zhang, Xiu-Rong;Zhang, Lei;Li, Qing-Hua;Wang, Lin;Shi, Li-Hong;Fang, Chun-Yan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.8
    • /
    • pp.3397-3401
    • /
    • 2014
  • Determining cell quantity is a common problem in cytology research and anti-tumor drug development. A simple and low-cost method was developed to determine monolayer and adherent-growth cell quantities. The cell nucleus is located in the cytoplasm, and is independent. Thus, the nucleus cannot make contact even if the cell density is heavy. This phenomenon is the foundation of accurate cell-nucleus recognition. The cell nucleus is easily recognizable in images after fluorescent staining because it is independent. A one-to-one relationship exists between the nucleus and the cell; therefore, this method can be used to determine the quantity of proliferating cells. Results indicated that the activity of the histone deacetylase inhibitor Z1 was effective after this method was used. The nude-mouse xenograft model also revealed the potent anti-tumor activity of Z1. This research presents a new anti-tumor-drug evaluation method.

Effect of Trichostatin A on CNE2 Nasopharyngeal Carcinoma Cells - Genome-wide DNA Methylation Alteration

  • Yang, Xiao-Li;Zhang, Cheng-Dong;Wu, Hua-Yu;Wu, Yong-Hu;Zhang, Yue-Ning;Qin, Meng-Bin;Wu, Hua;Liu, Xiao-Chun;Lina, Xing;Lu, Shao-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4663-4670
    • /
    • 2014
  • Trichostatin A (TSA) is a histone deacetylase (HDAC) inhibitor. We here investigated its effects on proliferation and apoptosis of the CNE2 carcinoma cell line, and attempted to establish genome-wide DNA methylation alteration due to differentially histone acetylation status. After cells were treated by TSA, the inhibitory rate of cell proliferation was examined with a CCK8 kit, and cell apoptosis was determined by flow cytometry. Compared to control, TSA inhibited CNE2 cell growth and induced apoptosis. Furthermore, TSA was found to induce genome-wide methylation alteration as assessed by genome-wide methylation array. Overall DNA methylation level of cells treated with TSA was higher than in controls. Function and pathway analysis revealed that many genes with methylation alteration were involved in key biological roles, such as apoptosis and cell proliferation. Three genes (DAP3, HSPB1 and CLDN) were independently confirmed by quantitative real-time PCR. Finally, we conclude that TSA inhibits CNE2 cell growth and induces apoptosis in vitro involving genome-wide DNA methylation alteration, so that it has promising application prospects in treatment of NPC in vivo. Although many unreported hypermethylated/hypomethylated genes should be further analyzed and validated, the pointers to new biomarkers and therapeutic strategies in the treatment of NPC should be stressed.

Acetic Acid Recovers Microtubule Disassembly Caused by Clostridium difficile Toxin A in Human Colonocytes through Increased Tubulin Acetylation (C. difficile 톡신이 야기하는 대장상피세포 미세소관 변형에 대한 초산의 억제 효능)

  • Yoon, I Na;Kim, Ho
    • Journal of Life Science
    • /
    • v.28 no.8
    • /
    • pp.885-891
    • /
    • 2018
  • Clostridium difficile (C. difficile) toxin A is known to cause acute gut inflammation in humans and animals by triggering cytoskeletal disorganization in gut epithelial cells. In human colonocytes, toxin A blocks microtubule assembly by directly increasing the enzymatic activity of histone deacetylase-6 (HDAC-6), a tubulin-specific deacetylase, thereby markedly decreasing tubulin acetylation, which is essential for microtubule assembly. Microtubule assembly dysfunction-associated alterations (i.e., toxin A-exposed gut epithelial cells) are believed to trigger barrier dysfunction and gut inflammation downstream. We recently showed that potassium acetate blocked toxin A-induced microtubule disassembly by inhibiting HDAC-6. Herein, we tested whether acetic acid (AA), another small acetyl residue-containing agent, could block toxin A-induced tubulin deacetylation and subsequent microtubule assembly. Our results revealed that AA treatment increased tubulin acetylation and enhanced microtubule assembly in an HT29 human colonocyte cell line. AA also clearly increased tubulin acetylation in murine colonic explants. Interestingly, the AA treatment also alleviated toxin A-induced tubulin deacetylation and microtubule disassembly, and MTT assays revealed that AA reduced toxin A-induced cell toxicity. Collectively, these results suggest that AA can block the ability of toxin A to cause microtubule disassembly-triggered cytoskeletal disorganization by blocking toxin A-mediated deacetylation of tubulin.

Effects of Valproic Acid on Proliferation, Apoptosis, Angiogenesis and Metastasis of Ovarian Cancer in Vitro and in Vivo

  • Shan, Zhao;Feng-Nian, Rong;Jie, Geng;Ting, Zhou
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.3977-3982
    • /
    • 2012
  • Inhibitors of histone deacetylase activity are emerging as a potentially important new class of anticancer agents. In this study, we assessed the anticancer effects of valproic acid (VPA) on ovarian cancer in vitro and in vivo. Cultured SKOV3 cells were treated by VPA with different concentrations and time, then the effects on cell growth, cell cycle, apoptosis, and related events were investigated. A human ovarian cancer model transplanted subcutaneously in nude mice was established, and the efficacy of VPA used alone and in combination with diammine dichloroplatinum (DDP) to inhibit the growth of tumors was also assessed. Proliferation of SKOV3 cells was inhibited by VPA in a dose and time dependent fashion. The cell cycle distribution changed one treatment with VPA, with decrease in the number of S-phase cells and increase in G1-phase. VPA could significantly inhibit the growth of the epithelial ovarian cancer SKOV3 cells in vivo without toxic side effects. Treatment with VPA combined with DDP demonstrated enhanced anticancer effects. The result of flow cytometry (FCM) indicated that after VPA in vitro and in vivo, the expression of E-cadherin was increased whereas vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9) were decreased. This study suggests that VPA could be a novel attractive agent for treatment of ovarian cancer.

Gene Expression Profiling of Non-Hodgkin Lymphomas

  • Zekri, Abdel-Rahman Nabawy;Hassan, Zeinab Korany;Bahnassy, Abeer Ahmed;Eldahshan, Dina Hassan;El-Rouby, Mahmoud Nour Eldin;Kamel, Mahmoud Mohamed;Hafez, Mohamed Mahmoud
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.7
    • /
    • pp.4393-4398
    • /
    • 2013
  • Background: Chromosomal translocations are genetic aberrations associated with specific non-Hodgkin lymphoma (NHL) subtypes. This study investigated the differential gene expression profile of Egyptian NHL cases based on a microarray approach. Materials and Methods: The study included tissue samples from 40 NHL patients and 20 normal lymph nodes used as controls. Total RNA was extracted and used for cDNA microarray assays. The quantitative real time polymerase chain reaction was used to identify the aberrantly expressed genes in cancer. Results: Significant associations of 8 up-regulated and 4 down-regulated genes with NHL were observed. Aberrant expression of a new group of genes not reported previously was apparent, including down-regulated NAG14 protein, 3 beta hydroxy-delta 5-c27 steroid oxi-reductase, oxi-glutarate dehydrogenase (lipo-amide), immunoglobulin lambda like polypeptide 3, protein kinase x linked, Hmt1, and caveolin 2 Tetra protein. The up-regulated genes were Rb binding protein 5, DKFZP586J1624 protein, protein kinase inhibitor gamma, zinc finger protein 3, choline ethanolamine phospho-transferase CEPT1, protein phosphatase, and histone deacetylase-3. Conclusions: This study revealed that new differentially expressed genes that may be markers for NHL patients and individuals who are at high risk for cancer development.

Epigenetic Regulation in the Brain after Spinal Cord Injury : A Comparative Study

  • Park, Bit-Na-Ri;Kim, Seok Won;Cho, Sung-Rae;Lee, Ji Yong;Lee, Young-Hee;Kim, Sung-Hoon
    • Journal of Korean Neurosurgical Society
    • /
    • v.53 no.6
    • /
    • pp.337-341
    • /
    • 2013
  • Objective : After spinal cord injury (SCI), functional and structural reorganization occurs at multiple levels of brain including motor cortex. However, the underlying mechanism still remains unclear. The current study was performed to investigate the alterations in the expression of the main regulators of neuronal development, survival and death, in the brain following thoracic contusive SCI in a mouse model. Methods : Eight-week-old female imprinting control region mice (n=60; 30-35 g) were used in this study. We analyzed the expression levels of regulators such as brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), nerve growth factor (NGF) and histone deacetylase (HDAC) 1 in the brain following thoracic contusive SCI. Results : The expression of BDNF levels were elevated significantly compared with control group at 2 weeks after injury (p<0.05). The expression of NGF levels were elevated at 2, 4 weeks compared with control group, but these difference were not significant (p>0.05). The GDNF levels were elevated at 2 week compared with control group, but these differences were not significant (p>0.05). The difference of HDAC1 levels were not significant at 2, 4 and 8 weeks compared with control group (p>0.05). Conclusion : These results demonstrate that the upregulation of BDNF may play on important role in brain reorganization after SCI.

Metformin alleviates chronic obstructive pulmonary disease and cigarette smoke extract-induced glucocorticoid resistance by activating the nuclear factor E2-related factor 2/heme oxygenase-1 signaling pathway

  • Tao, Fulin;Zhou, Yuanyuan;Wang, Mengwen;Wang, Chongyang;Zhu, Wentao;Han, Zhili;Sun, Nianxia;Wang, Dianlei
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.2
    • /
    • pp.95-111
    • /
    • 2022
  • Chronic obstructive pulmonary disease (COPD) is an important healthcare problem worldwide. Often, glucocorticoid (GC) resistance develops during COPD treatment. As a classic hypoglycemic drug, metformin (MET) can be used as a treatment strategy for COPD due to its anti-inflammatory and antioxidant effects, but its specific mechanism of action is not known. We aimed to clarify the role of MET on COPD and cigarette smoke extract (CSE)-induced GC resistance. Through establishment of a COPD model in rats, we found that MET could improve lung function, reduce pathological injury, as well as reduce the level of inflammation and oxidative stress in COPD, and upregulate expression of nuclear factor E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), multidrug resistance protein 1 (MRP1), and histone deacetylase 2 (HDAC2). By establishing a model of GC resistance in human bronchial epithelial cells stimulated by CSE, we found that MET reduced secretion of interleukin-8, and could upregulate expression of Nrf2, HO-1, MRP1, and HDAC2. MET could also increase the inhibition of MRP1 efflux by MK571 significantly, and increase expression of HDAC2 mRNA and protein. In conclusion, MET may upregulate MRP1 expression by activating the Nrf2/HO-1 signaling pathway, and then regulate expression of HDAC2 protein to reduce GC resistance.

Identification of druggable genes for multiple myeloma based on genomic information

  • Rahmat Dani Satria;Lalu Muhammad Irham;Wirawan Adikusuma;Anisa Nova Puspitaningrum;Arief Rahman Afief;Riat El Khair;Abdi Wira Septama
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.31.1-31.8
    • /
    • 2023
  • Multiple myeloma (MM) is a hematological malignancy. It is widely believed that genetic factors play a significant role in the development of MM, as investigated in numerous studies. However, the application of genomic information for clinical purposes, including diagnostic and prognostic biomarkers, remains largely confined to research. In this study, we utilized genetic information from the Genomic-Driven Clinical Implementation for Multiple Myeloma database, which is dedicated to clinical trial studies on MM. This genetic information was sourced from the genome-wide association studies catalog database. We prioritized genes with the potential to cause MM based on established annotations, as well as biological risk genes for MM, as potential drug target candidates. The DrugBank database was employed to identify drug candidates targeting these genes. Our research led to the discovery of 14 MM biological risk genes and the identification of 10 drugs that target three of these genes. Notably, only one of these 10 drugs, panobinostat, has been approved for use in MM. The two most promising genes, calcium signal-modulating cyclophilin ligand (CAMLG) and histone deacetylase 2 (HDAC2), were targeted by four drugs (cyclosporine, belinostat, vorinostat, and romidepsin), all of which have clinical evidence supporting their use in the treatment of MM. Interestingly, five of the 10 drugs have been approved for other indications than MM, but they may also be effective in treating MM. Therefore, this study aimed to clarify the genomic variants involved in the pathogenesis of MM and highlight the potential benefits of these genomic variants in drug discovery.

Expressed Sequence Tags in Rainbow Trout (Oncorhynchus mykiss) Kidney and Microarray Analysis in Young and Old Kidney (무지개송어 신장으로부터 EST 발굴 및 연령에 따른 유전자 발현 분석)

  • Kim, Soon-Hag;Shin, Yong-Kook;Bang, In-Chul
    • Journal of Life Science
    • /
    • v.13 no.1
    • /
    • pp.128-135
    • /
    • 2003
  • 102 ESTs (Expressed Sequence Tags) were obtained by sequencing clones from a library of rainbow trout kidney cDNAs. Of the sequences generated, 55.8% of the ESTs were represented by 37 known genes. The 45 clones of unknown gene products potentially represent 40 novel genes. The genes involved in structural function (14.5%) and transcription/translation (11.6%) account for the major gene expression activities in the kidney Microarray experiment was conducted to compare gene expression of the unique ESTs in young and adult rainbow trout kidneys. While mitochondrion, cytochrome b, rho G, spastin protein, and three unknown genes were down-regulated in the mature fish kidney, calponin 1, calcium binding protein, histone deacetylase 1, and an unknown gene were up-regulated in the mature fish kidney. This research demonstrates the feasibility and power of functional genomics in rainbow trout.