Browse > Article
http://dx.doi.org/10.5352/JLS.2018.28.8.885

Acetic Acid Recovers Microtubule Disassembly Caused by Clostridium difficile Toxin A in Human Colonocytes through Increased Tubulin Acetylation  

Yoon, I Na (Division of Life Science and Chemistry, College of Natural Science, Daejin University)
Kim, Ho (Division of Life Science and Chemistry, College of Natural Science, Daejin University)
Publication Information
Journal of Life Science / v.28, no.8, 2018 , pp. 885-891 More about this Journal
Abstract
Clostridium difficile (C. difficile) toxin A is known to cause acute gut inflammation in humans and animals by triggering cytoskeletal disorganization in gut epithelial cells. In human colonocytes, toxin A blocks microtubule assembly by directly increasing the enzymatic activity of histone deacetylase-6 (HDAC-6), a tubulin-specific deacetylase, thereby markedly decreasing tubulin acetylation, which is essential for microtubule assembly. Microtubule assembly dysfunction-associated alterations (i.e., toxin A-exposed gut epithelial cells) are believed to trigger barrier dysfunction and gut inflammation downstream. We recently showed that potassium acetate blocked toxin A-induced microtubule disassembly by inhibiting HDAC-6. Herein, we tested whether acetic acid (AA), another small acetyl residue-containing agent, could block toxin A-induced tubulin deacetylation and subsequent microtubule assembly. Our results revealed that AA treatment increased tubulin acetylation and enhanced microtubule assembly in an HT29 human colonocyte cell line. AA also clearly increased tubulin acetylation in murine colonic explants. Interestingly, the AA treatment also alleviated toxin A-induced tubulin deacetylation and microtubule disassembly, and MTT assays revealed that AA reduced toxin A-induced cell toxicity. Collectively, these results suggest that AA can block the ability of toxin A to cause microtubule disassembly-triggered cytoskeletal disorganization by blocking toxin A-mediated deacetylation of tubulin.
Keywords
Acetic acid; Clostridium difficile toxin A; colitis; microtubule assembly; tubulin acetylation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kim, H., Rhee, S. H., Kokkotou, E., Na, X., Savidge, T., Moyer, M. P., Pothoulakis, C. and LaMont, J. T. 2005. Clostridium difficile toxin A regulates inducible cyclooxygenase-2 and prostaglandin E2 synthesis in colonocytes via reactive oxygen species and activation of p38 MAPK. J. Biol. Chem. 280, 21237-21245.   DOI
2 Kim, H., Rhee, S. H., Pothoulakis, C. and Lamont, J. T. 2007. Inflammation and apoptosis in Clostridium difficile enteritis is mediated by PGE2 up-regulation of Fas ligand. Gastroenterology 133, 875-886.   DOI
3 Lu, L. F., Kim, D. H., Lee, I. H., Hong, J., Zhang, P., Yoon, I. N., Hwang, J. S. and Kim, H. Potassium acetate blocks Clostridium difficile toxin A-induced microtubule disassembly by directly inhibiting histone deacetylase 6, thereby ameliorating inflammatory responses in the gut. J. Microbiol. Biotechnol. 26, 693-699.
4 Maduzia, D., Matuszyk, A., Ceranowicz, D., Warzecha, Z., Ceranowicz, P., Fyderek, K., Galazka, K. and Dembinski, A. The influence of pretreatment with ghrelin on the development of acetic-acid-induced colitis in rats. J. Physiol. Pharmacol. 66, 875-885.
5 Na, X., Zhao, D., Koon, H. W., Kim, H., Husmark, J., Moyer, M. P., Pothoulakis, C. and LaMont, J. T. 2005. Clostridium difficile toxin B activates the EGF receptor and the ERK/MAP kinase pathway in human colonocytes. Gastroenterology 128, 1002-1011.   DOI
6 Finnie, I. A., Dwarakanath, A. D., Taylor, B. A. and Rhodes, J. M. 1995. Colonic mucin synthesis is increased by sodium butyrate. Gut 36, 93-99.   DOI
7 Alger, J. R. and Prestegard, J. H. 1979. Nuclear magnetic resonance study of acetic acid permeation of large unilamellar vesicle membranes. Biophys. J. 28, 1-13.   DOI
8 Arregui, L. C., Munoz-Fontela, C., Serrano, S., Barasoain, I. and Guinea, A. 2002. Direct visualization of the microtubular cytoskeleton of ciliated protozoa with a fluorescent taxoid. J. Eukaryot. Microbiol. 49, 312-318.   DOI
9 Bicek, A. D., Tuzel, E., Demtchouk,A., Uppalapati, M., Hancock, W. O., Kroll, D. M. and Odde, D. J. 2009. Anterograde microtubule transport drives microtubule bending in LLC-PK1 epithelial cells. Mol. Biol. Cell 20, 2943-2953.   DOI
10 Haggarty, S. J., Koeller, K. M., Wong, J. C., Grozinger, C. M. and Schreiber, S. L. 2003. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc. Natl. Acad. Sci. USA. 100, 4389-4394.   DOI
11 Han, Y., Malak, H., Chaudhary, A. G., Chordia, M. D., Kingston, D. G. and Bane, S. 1998. Distances between the paclitaxel, colchicine, and exchangeable GTP binding sites on tubulin. Biochemistry 37, 6636-6644.   DOI
12 Pothoulakis, C. and Lamont, J. T. 2001. Microbes and microbial toxins: paradigms for microbial-mucosal interactions II. The integrated response of the intestine to Clostridium difficile toxins. Am. J. Physiol. Gastrointest. Liver Physiol. 280, G178-183.   DOI
13 Nam, H. J., Kang, J. K., Kim, S. K., Ahn, K. J., Seok, H., Park, S. J., Chang, J. S., Pothoulakis, C., Lamont, J. T. and Kim, H. Clostridium difficile toxin A decreases acetylation of tubulin, leading to microtubule depolymerization through activation of histone deacetylase 6, and this mediates acute inflammation. J. Biol. Chem. 285, 32888-32896.
14 Ogawa, N., Satsu, H., Watanabe, H., Fukaya, M., Tsukamoto, Y., Miyamoto, Y. and Shimizu, M. 2000. Acetic acid suppresses the increase in disaccharidase activity that occurs during culture of caco-2 cells. J. Nutr. 130, 507-513.   DOI
15 Ouyang, B. and Howard, B. J. 2009. The monohydrate and dihydrate of acetic acid: a high-resolution microwave spectroscopic study. Phys. Chem. Chem. Phys. 11, 366-373.   DOI
16 Southwood, C. M., Peppi, M., Dryden, S., Tainsky, M. A. and Gow, A. 2007. Microtubule deacetylases, SirT2 and HDAC6, in the nervous system. Neurochem. Res. 32, 187-195.   DOI
17 Ho, J. G., Greco, A., Rupnik, M. and Ng, K. K. 2005. Crystal structure of receptor-binding C-terminal repeats from Clostridium difficile toxin A. Proc. Natl. Acad. Sci. USA. 102, 18373-18378.   DOI
18 He, D., Hagen, S. J., Pothoulakis, C., Chen, M., Medina, N. D., Warny, M. and LaMont, J. T. 2000. Clostridium difficile toxin A causes early damage to mitochondria in cultured cells. Gastroenterology 119, 139-150.   DOI
19 Hecht, G., Pothoulakis, C., LaMont, J. T. and Madara, J. L. 1988. Clostridium difficile toxin A perturbs cytoskeletal structure and tight junction permeability of cultured human intestinal epithelial monolayers. J. Clin. Invest. 82, 1516-1524.   DOI
20 Henriques, B., Florin, I. and Thelestam, M. 1987. Cellular internalisation of Clostridium difficile toxin A. Microb. Pathog. 2, 455-463.   DOI
21 Hou, J. K., Abraham, B. and El-Serag, H. Dietary intake and risk of developing inflammatory bowel disease: a systematic review of the literature. Am. J. Gastroenterol. 106, 563-573.
22 Ishiguro, K., Ando, T., Maeda, O., Watanabe, O. and Goto, H. Suppressive action of acetate on interleukin-8 production via tubulin-alpha acetylation. Immunol. Cell Biol. 92, 624-630.
23 Just, I., Fritz, G., Aktories, K., Giry, M., Popoff, M. R., Boquet, P., Hegenbarth, S. and von Eichel-Streiber, C. 1994. Clostridium difficile toxin B acts on the GTP-binding protein Rho. J. Biol. Chem. 269, 10706-10712.
24 Just, I., Selzer, J., von Eichel-Streiber, C. and Aktories, K. 1995. The low molecular mass GTP-binding protein Rho is affected by toxin A from Clostridium difficile. J. Clin. Invest. 95, 1026-1031.   DOI
25 Kelly, C. P., Pothoulakis, C. and LaMont, J. T. 1994. Clostridium difficile colitis. N. Engl. J. Med. 330, 257-262.   DOI
26 Topping, D. L. and Clifton, P. M. 2001. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol. Rev. 81, 1031-1064.   DOI
27 Just, I., Selzer, J., Wilm, M., von Eichel-Streiber, C., Mann, M. and Aktories, K. 1995. Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature 375, 500-503.   DOI
28 Just, I., Wilm, M., Selzer, J., Rex, G., von Eichel-Streiber, C., Mann, M. and Aktories, K. 1995. The enterotoxin from Clostridium difficile (ToxA) monoglucosylates the Rho proteins. J. Biol. Chem. 270, 13932-13936.   DOI
29 Kelly, C. P. and LaMont, J. T. 1998. Clostridium difficile infection. Annu. Rev. Med. 49, 375-390.   DOI
30 Kelly, C. P. and LaMont, J. T. 2008. Clostridium difficile--more difficult than ever. N. Engl. J. Med. 359, 1932-1940.   DOI
31 Kim, C. H., Park, J. and Kim, M. Gut microbiota-derived short-chain Fatty acids, T cells, and inflammation. Immune. Netw. 14, 277-288.
32 Kim, D. H., Hwang, J. S., Lee, I. H., Nam, S. T., Hong, J., Zhang, P., Lu, L. F., Lee, J., Seok, H., Pothoulakis, C., Lamont, J. T. and Kim, H. The insect peptide CopA3 increases colonic epithelial cell proliferation and mucosal barrier function to prevent inflammatory responses in the gut. J. Biol. Chem. 291, 3209-3223.
33 Kim, H., Kokkotou, E., Na, X., Rhee, S. H., Moyer, M. P., Pothoulakis, C. and Lamont, J. T. 2005. Clostridium difficile toxin A-induced colonocyte apoptosis involves p53-dependent p21(WAF1/CIP1) induction via p38 mitogen-activated protein kinase. Gastroenterology 129, 1875-1888.   DOI