• Title/Summary/Keyword: histone Hl protein

Search Result 7, Processing Time 0.023 seconds

Expression of a Human Histone H1.5 in Transgenic Tobacco Cultured Cells (담배 배양세포에서 인간 히스톤 단백질 H1.5의 발현)

  • Kim, Kee-Yeun;Kwon, Suk-Yoon;Song, Jae-Young;Lee, Haeng-Soon;Kwak, Sang-Soo
    • Journal of Plant Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.175-178
    • /
    • 2004
  • Transgenic tobacco (Nicotiana tabacum L. cv Bright Yellow-2) cell lines expressing a human histone H1.5 (referred to as hH1.5), which suppress collagen-induced rheumatoid arthritis, were developed under the oxidative stress-inducible peroxidase (SWPA2) promoter. Tobacco BY-2 cells were transformed by Agrobacterium-mediated method. The kanamycin-resistant calli were selected on the modified MS medium containing 150mg/L kanamycin and 300mg/L claforan. Transgenic cell lines were confirmed by PCR and northern blot analysis. Recombinant hH1.5 (rhH1.5) protein (42 kDa) was also detected by Western blot analysis, showing a different molecular weight of human hH1.5 (32 kDa). These results suggested that a hH1.5 gene was properly introduced in tobacco cultured cells under the control of SWPA2 promoter. The further characterization of rhH1.5 protein remains to be studied.

Pharmacokinetics of a New Histone Hl Protein (p961), an Arthritis-suppressing Agent, in Rats and Rabbits (항류마치스 효과를 갖는 새로운 히스톤 H1 단백질 (p961)의 흰쥐와 토끼에 대한 약물동태)

  • 우수경;윤민혁;이재흥;권광일
    • YAKHAK HOEJI
    • /
    • v.45 no.4
    • /
    • pp.378-386
    • /
    • 2001
  • A purified histone Hl protein, p961, which plays a role in mediating the condensation of DNA into chromatin, was recently proved as an arthritis-suppressing agent in the mouse CIA model. The pharmacokinetics of p961 was carried out in rats and rabbits. The rat's blood, bile and urine samples were serially collected from the femoral vein, common bile duct, and bladder respectively, after bolus i.v. injection at low (10 mg/kg) and high (30 mg/mg) doses. The rabbit's blood samples were also collected from the marginal ear vein after bolus i.v. injection at a dose 10 mg/kg. p961 and its major metabolite in the physiological samples were analyzed by reverse-phase HPLC using a Yydac C4 protein column and a multistep water-acetonitrile gradient containing 0.24% trifluoroacetic acid. The major pharmacokinetic parameters (AUC, $C_{max}$, MRT, $t_{1}$2/, $V_{ss}$ and Cl) were estimated from the time course of plasma p961 and metabolite concentrations using WinNonlin. A two-compartment model was chosen for p961 as the most appropriate pharmacokinetic model. After i.v. injection of p961 at doses of 10 mg/kg and 30 mg/kg, more than 80% of p961 was removed rapidly from the plasma within 15 min. The plasma half-life of p961 in rats and rabbits was found not to exceed 12 min. p961 (22448.9 mol wt) was rapidly cleaved to 21612 mot wt fragment and the breakdown product appeared rapidly in the circulation with no lag phase. p961 and metabolite were not detected in rat urine and bile....

  • PDF

Down-Regulation of Mcl-1 by Small Interference RNA Induces Apoptosis and Sensitizes HL-60 Leukemia Cells to Etoposide

  • Karami, Hadi;Baradaran, Behzad;Esfehani, Ali;Sakhinia, Masoud;Sakhinia, Ebrahim
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.629-635
    • /
    • 2014
  • Background: Acute myeloid leukemia (AML) is a fatal hematological malignancy which is resistant to a variety of chemotherapy drugs. Myeloid cell leukemia-1 (Mcl-1), a death-inhibiting protein that regulates apoptosis, has been shown to be overexpressed in numerous malignancies. In addition, it has been demonstrated that the expression level of the Mcl-1 gene increases at the time of leukemic relapse following chemotherapy. The aim of this study was to target Mcl-1 by small interference RNA (siRNA) and analyze its effects on survival and chemosensitivity of acute myeloid leukemia cell line HL-60. Materials and Methods: siRNA transfection was performed with a liposome approach. The expression levels of mRNA and protein were measured by real-time quantitative PCR and Western blot analysis, respectively. Trypan blue assays were performed to evaluate tumor cell growth after siRNA transfection. The cytotoxic effects of Mcl-1 siRNA (siMcl-1) and etoposide were determined using MTT assay on their own and in combination. Apoptosis was quantified using a DNA-histone ELISA assay. Results: Transfection with siMcl-1 significantly suppressed the expression of Mcl-1 mRNA and protein in a time-dependent manner, resulting in strong growth inhibition and spontaneous apoptosis. Surprisingly, pretreatment with siMcl-1 synergistically enhanced the cytotoxic effect of etoposide. Furthermore, Mcl-1 down-regulation significantly increased apoptosis sensitivity to etoposide. No significant biological effects were observed with negative control siRNA treatment. Conclusions: Our results suggest that specific suppression of Mcl-1 by siRNA can effectively induce apoptosis and overcome chemoresistance of leukemic cells. Therefore, siMcl-1 may be a potent adjuvant in leukemia chemotherapy.

Inhibitory Effect of Lipid Bilayer Membrane on Protein Phosphatase 2A (Protein Phosphatase 2A의 활성화에 미치는 Lipid Bilayer Membrane의 저해 효과)

  • 남기열
    • KSBB Journal
    • /
    • v.7 no.4
    • /
    • pp.302-307
    • /
    • 1992
  • Protein phosphatase 2A was obtained from a cytosolic fraction of bovine brain homogenate. The phosphatase activity using phosphorylated histone Hl as substrate was suppressed in the presence of liposomes composed of dipalmitoylphosphatidylcholine(DPPC) or the mixture of phosphatidylserine and DPPC. The binding of protein phosphatase to liposome was indicated by the facts that the phosphatase activity of the supernatant of protein phosphatase/multilayer vesicle mixture was decreased with increasing amount of liposome, and that [$^{125}I$]-labeled protein phosphatase was coeluted with liposome. However, the affinity of the protein for phospholipid membrane was not so high. On the other hand, okadaic acid and liposome reduced the phosphatase activity synergistically, which means that okadaic acid binds neither to lipid membrane nor to the membrane-associated phosphatase, The inhibitory effect of liposome was, therefore, ascribed to association of the protein phosphatase 2A with the lipid bilayer membrane.

  • PDF

Induction of Maturation Promoting Factor in Runo Oocvtes by Protein Kinase C Activation in uitro. (개구리 난자에서 Protein Kinase C의 활성화에 의한 Maturation Promoting Factor의 생성유도)

  • 유영란;임욱빈
    • The Korean Journal of Zoology
    • /
    • v.35 no.3
    • /
    • pp.277-286
    • /
    • 1992
  • 개구리의 난자로 부터 maturation promoting factor(MPF)를 추출, 부분 분리하여 이들의 활성을 조사하고 이 물질의 생성과 protein kinase C(반KC)와의 관계를 조사하SB다. 성숙된 난자를 분쇄한 후 초원심분리과정을 거쳐 MPF의 crude extract(CE)를 얻은 다음 ultrafiltration (UF)과 고속액체크로마토그라피를 거쳐서 3종류의 분획 (peak 1, 11, and 111)을 얻었다. 이들 분획을 in nitro assay와 autoradiDgraphy를 사용하여 확인한 결과 분획 11에서 MPF 활성이 있는 것을 알았다. 분리 단계에 따라 MPF의 정제도를 Hl histone kinase assay로 조사한 결깍 UF를 거친 것은 CE보다 약 3배로, 분획 11에서는 약 117배로 증가한 것을 확인하였다. 또한 MPF분획의 인산화를 autoradiography로 조사한 결과 45 KD 단백질을 포함한 수종의 난자 단백질이 강하게 인산화되었음을 알 수 있었다. PKC의 활성화가 난자내 MPF의 생성을 유도하는가를 보기 위하여 PKC의 활성제인 12-0-tetradecanoyl phorbol 13 acetate(TPA)를 처리한 난자의 세포질 추출물을 미세주입 법으로 조사한 결과 TPA 처리 후 6시간부터 난자내 MPF의 활성이 나타나는 것을 알 수 있었다. 이러한 결과들은 PKC의 활성화가 MPF의 생성을 유도하고, MPF의 활성화와 함께 일부 단백질들의 인산화를 통하여 궁극적으로 난자 성숙을 촉진했음을 시사한다.

  • PDF

SUV39H1 is a New Client Protein of Hsp90 Degradated by Chaetocin as a Novel C-Terminal Inhibitor of Hsp90

  • Lian, Bin;Lin, Qian;Tang, Wei;Qi, Xin;Li, Jing
    • Biomolecules & Therapeutics
    • /
    • v.29 no.1
    • /
    • pp.73-82
    • /
    • 2021
  • Hsp90 is often overexpressed with activated form in cancer cells, and many key cellular proteins are dependent upon the Hsp90 machinery (these proteins are called "client protein"). Nowadays, more client proteins and more inhibitors of Hsp90 are being discovered. Chaetocin has been identified as an inhibitor of histone methyl transferase SUV39H1. Herein, we find that Chaetocin is an inhibitor of Hsp90 which binds to the C-terminal of Hsp90α. Chaetocin inhibited a variety of Hsp90 client proteins including AMl1-ETO and BCL-ABL, the mutant fusion-protein in the K562 and HL-60 cells. SUV39H1 mediates epigenetic events in the pathophysiology of hematopoietic disorders. We found that inhibition of Hsp90 by Chaetocin and 17-AAG had ability to induce degradation of SUV39H1 through proteasome pathway. In addition, SUV39H1 interacted with Hsp90 through co-chaperone HOP. These results suggest that SUV39H1 belongs to a client protein of Hsp90. Moreover, Chaetocin was able to induce cell differentiation in the two cells in the concentration range of Hsp90 inhibition. Altogether, our results demonstrate that SUV39H1 is a new client protein of Hsp90 degradated by Chaetocin as a novel C-terminal inhibitor of Hsp90. The study establishes a new relationship of Chaetocin and SUV39H1, and paves an avenue for exploring a new strategy to target SUV39H1 by inhibition of Hsp90 in leukemia.

Rkp1/CPC2, a RACK1 Homolog, Interacts with Pck1 to Regulate PKC-Mediated Signaling in Schizosaccharomyces pombe

  • Won, Mi-Sun;Jang, Young-Joo;Hoe, Kwang-Lae;Park, Jo-Young;Chung, Kyung-Sook;Kim, Dong-Uk;Sun, Nam-Kyu;Kim, Sung-Ai;Song, Kyung-Bin;Yoo, Hyang-Sook
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.4
    • /
    • pp.592-597
    • /
    • 2002
  • The Rkp1/CPC2, a receptor for activated protein kinase C of Schizosaccharomyces pombe, contains seven WD motifs found in the G-protein $\beta$-subunit. A 110-kDa protein was identified to interact with Rkp1/CPC2 by immunoprecipitation and following in vitro binding assay. To examine its kinase activity and binding ability to Rkp1, the $pck1^+$, a PKC homolog of S. pombe, was cloned. Pckl phosphorylated myelin basic protein (MBP) and histone Hl in a phospholipid-dependent and $Ca^{2+}$-independent manner. It was demonstrated that the N-terminal region of Pck1 was responsible for the binding to Rkp1 , thus suggesting that Rkp1 interacted with Pckl to regulate Pckl-mediated signaling in S. pombe.