본 논문에서는 모수적 부트스트랩을 이용한 두 차등정보보호 히스토그램의 동질성 검정을 제안한다. 제안된 검정 방법은 차등정보보호 히스토그램과 적용된 차등정보보호 수준 정보만 있을 때에도 사용 가능하며, 비교하고자 하는 두 히스토그램에 적용된 차등정보보호의 수준이 다를 때에도 사용할 수 있다는 장점이 있다. 검정 방법의 성능을 평가하기 위해 미국과 한국의 연령별 인구분포 자료를 사용하고, 제 1종 오류의 확률이 잘 통제됨과 높은 검정력을 확인한다.
Spatiograms are histograms augmented with spatial means and covariances to capture a richer description of the target. We present a particle filtering framework for region-based tracking using spatiograms. Unlike mean shift, the framework allows for non-differentiable similarity measures to compare two spatiograms; we present one such similarity measure, a combination of a recent weighting scheme and histogram intersection. Experimental results show improved performance with the new measure as well as the importance of global spatial information for tracking. The performance of spatiograms is compared with color histograms and several texture histogram methods.
This paper describes an efficient method of texture image segmentation based on conditional 1-dimensional histograms. We consider the multi-dimensional histogram, and it is projected into each axis in order to obtain conditional 1-dimensional histograms. And we extract uniform regions by iteratively applying the peak-valley detection method to conditional 1-dimensional histograms. In view of the amount of memory and computation time, the proposed method is superior to the conventional method which uses the multi-dimensional histogram. By applying the proposed method to the artificial and natural texture images some desirable results are obtained.
히스토그램은 최근들어 많은 관심을 끌고 있다. 히스토그램은 주로 상용 데이타베이스 관리 시스템에서 질의 최적화를 위해 속성의 값에 대한 데이타 분포를 추정하는데 사용되었다. 최근에는 근사 질의와 스트림 데이타에 대한 연구 분야에서 히스토그램에 대한 관심이 커지고 있다. 관계형 데이타베이스에서 두 개 이상의 속성에 대한 결합 데이타 분포를 근사시키는 가장 간단한 방법은 각 속성의 데이타 분포가 결합 데이타 분포에 독립적이라고 가정하는 속성 값 독립(Attribute Value Independence: AVI) 가정하 에서 각각의 속성에 대해서 히스토그램을 만드는 것이다 그러나 실제 데이타에서 이 가정은 잘 맞지 않는다. 따라서 이 문제를 해결하기 위해서 웨이블릿, 랜덤 샘플링, 다차원 히스토그램과 같은 기법들이 제안되 었다. 그 중에서 GENHIST는 실수형 속성에 대한 데이타 분포를 근사시키기 위해 고안된 다차원의 히스토그램이다. GENHIST는 데이타 분포를 좀 더 효과적으로 근사시키기 위해서 중첩되는 버킷을 사용한다. 본 논문에서는 SSE(Sum Squared Error)를 최소화시키는 중첩되는 버킷들의 최적 빈도를 결정하는 OPT 알고리즘을 제안한다. 처음에 GENHIST에 의해 중첩되는 버킷으로 구성되는 히스토그램을 만든 후에 OPT 알고리즘에 의해서 각 버킷의 빈도를 다시 계산해서 GENHIST를 개선시킬 수 있다. 실험 결과는 OPT 알고리즘이 GENHIST에 의해 만들어진 히스토그램의 정확도를 크게 개선시킴을 보여준다.
The paper proposes a novel framework for 3D face verification using dimensionality reduction based on highly distinctive local features in the presence of illumination and expression variations. The histograms of efficient local descriptors are used to represent distinctively the facial images. For this purpose, different local descriptors are evaluated, Local Binary Patterns (LBP), Three-Patch Local Binary Patterns (TPLBP), Four-Patch Local Binary Patterns (FPLBP), Binarized Statistical Image Features (BSIF) and Local Phase Quantization (LPQ). Furthermore, experiments on the combinations of the four local descriptors at feature level using simply histograms concatenation are provided. The performance of the proposed approach is evaluated with different dimensionality reduction algorithms: Principal Component Analysis (PCA), Orthogonal Locality Preserving Projection (OLPP) and the combined PCA+EFM (Enhanced Fisher linear discriminate Model). Finally, multi-class Support Vector Machine (SVM) is used as a classifier to carry out the verification between imposters and customers. The proposed method has been tested on CASIA-3D face database and the experimental results show that our method achieves a high verification performance.
영상의 색상 정보는 비슷한 영상들의 유사도를 효과적으로 측정하는데 사용된다. 그러나, 색상정보의 크기는 영상 데이터베이스에서 효율적으로 다루기에는 너무나 방대하다. 본 논문에서는 히스토그램 보간법에 의하여 유사한 영상들을 검색하는 새로운 방법을 제시한다 알고리즘의 기본 원리는 색상 히스토그램의 분포를 이용하여 영상을 검색하는 기존 방법에서 출발한다. 그러나, 질의 영상과 대상 영상과의 유사도를 결정하는데 있어서 보간법에 의하여 히스토그램의 분포도를 간략화 시킨다는 근본적인 차이를 가지고 있다. 색상 히스토그램의 분포는 최적 차수의 다항식으로 보간되어서 표현되었다. 히스토그램의 분포가 보간된 후에는 저차원 다항식의 계수들만이 색상 구분자로서 데이터베이스에 저장되고 검색하는데 활용될 수 있다. 제안된 방법은 실제 영상들에 적용되었으며 만족할 만한 결과를 보여주고 있다.
선택도 추정 기법은 질의 최적화를 위해 현재 상용 데이터 베이스에서 많이 사용되고 있고 히스토그램은 가장 많이 사용되는 선택도 추정 기법중의 하나이다. 최근에 시공간 데이터 베이스 관련 연구들에서 이러한 선택도 추정 기법이 기존의 시간 공간 데이타베이스 선택도 추정 기법을 확장하여 활발하게 연구되었다. 하지만 기존의 시공간 데이타베이스 선택도 추정 연구는 주로 이동 객체와 같은 시계열 데이타만 고려하였다. 또한 기존의 연구는 과거시점부터 현재 시점까지 시간적 범위 질의에 대한 선택도 추정은 불가능하였다. 따라서 본 논문에서는 시공간 데이타베이스에서 과거 시점에서 현재시점까지 시퀀스 데이타의 시간적 범위 질의를 위한 히스토그램을 구축하고 이를 이용한 효과적인 선택도 추정 기법을 제안한다. 제안한 히스토그램을 이용하면 과거부터 현재까지 시퀀스 데이타의 선택도 추정이 가능하고, 범위시간 선택도 추정 기법이 가능하며 효과적인 히스토그램 유지 기법의 적용이 가능하다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제10권4호
/
pp.1807-1823
/
2016
Local Binary Pattern (LBP) and its variants have powerful discriminative capabilities but most of them just consider each LBP code independently. In this paper, we propose sub oriented histograms of LBP for smoke detection and image classification. We first extract LBP codes from an image, compute the gradient of LBP codes, and then calculate sub oriented histograms to capture spatial relations of LBP codes. Since an LBP code is just a label without any numerical meaning, we use Hamming distance to estimate the gradient of LBP codes instead of Euclidean distance. We propose to use two coordinates systems to compute two orientations, which are quantized into discrete bins. For each pair of the two discrete orientations, we generate a sub LBP code map from the original LBP code map, and compute sub oriented histograms for all sub LBP code maps. Finally, all the sub oriented histograms are concatenated together to form a robust feature vector, which is input into SVM for training and classifying. Experiments show that our approach not only has better performance than existing methods in smoke detection, but also has good performance in texture classification.
KSII Transactions on Internet and Information Systems (TIIS)
/
제8권7호
/
pp.2400-2419
/
2014
Pre-segmented pixels can reduce the difficulty of segmentation and promote the segmentation performance. This paper proposes a novel segmentation method based on merging texture superpixels by computing inner similarity. Firstly, we design a set of Gabor filters to compute the amplitude responses of original image and compute the texture map by a salience model. Secondly, we employ the simple clustering to extract superpixles by affinity of color, coordinates and texture map. Then, we design a normalized histograms descriptor for superpixels integrated color and texture information of inner pixels. To obtain the final segmentation result, all adjacent superpixels are merged by the homogeneity comparison of normalized color-texture features until the stop criteria is satisfied. The experiments are conducted on natural scene images and synthesis texture images demonstrate that the proposed segmentation algorithm can achieve ideal segmentation on complex texture regions.
Generally, feature area detection methods are widely used for face expression recognition by detecting the feature areas of human eyes, eyebrows and mouth. In this paper, we proposed a face expression recognition method using the histograms of the face, eyes and mouth for many applications including robot technology. The experimental results show that the proposed method has a new type of face expression recognition capability compared to conventional methods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.