• Title/Summary/Keyword: histogram filtering

Search Result 88, Processing Time 0.029 seconds

A Novel Filter ed Bi-Histogram Equalization Method

  • Sengee, Nyamlkhagva;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.6
    • /
    • pp.691-700
    • /
    • 2015
  • Here, we present a new framework for histogram equalization in which both local and global contrasts are enhanced using neighborhood metrics. When checking neighborhood information, filters can simultaneously improve image quality. Filters are chosen depending on image properties, such as noise removal and smoothing. Our experimental results confirmed that this does not increase the computational cost because the filtering process is done by our proposed arrangement of making the histogram while checking neighborhood metrics simultaneously. If the two methods, i.e., histogram equalization and filtering, are performed sequentially, the first method uses the original image data and next method uses the data altered by the first. With combined histogram equalization and filtering, the original data can be used for both methods. The proposed method is fully automated and any spatial neighborhood filter type and size can be used. Our experiments confirmed that the proposed method is more effective than other similar techniques reported previously.

An Improved Histogram-Based Image Hash (Histogram에 기반한 Image Hash 개선)

  • Kim, So-Young;Kim, Hyoung-Joong
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.531-534
    • /
    • 2008
  • Image Hash specifies as a descriptor that can be used to measure similarity in images. Among all image Hash methods, histogram based image Hash has robustness to common noise-like operation and various geometric except histogram _equalization. In this_paper an improved histogram based Image Hash that is using "Imadjust" filter I together is proposed. This paper has achieved a satisfactory performance level on histogram equalization as well as geometric deformation.

  • PDF

Adaptive Histogram Projection And Detail Enhancement for the Visualization of High Dynamic Range Infrared Images

  • Lee, Dong-Seok;Yang, Hyun-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.11
    • /
    • pp.23-30
    • /
    • 2016
  • In this paper, we propose an adaptive histogram projection technique for dynamic range compression and an efficient detail enhancement method which is enhancing strong edge while reducing noise. First, The high dynamic range image is divided into low-pass component and high-pass component by applying 'guided image filtering'. After applying 'guided filter' to high dynamic range image, second, the low-pass component of the image is compressed into 8-bit with the adaptive histogram projection technique which is using global standard deviation value of whole image. Third, the high-pass component of the image adaptively reduces noise and intensifies the strong edges using standard deviation value in local path of the guided filter. Lastly, the monitor display image is summed up with the compressed low-pass component and the edge-intensified high-pass component. At the end of this paper, the experimental result show that the suggested technique can be applied properly to the IR images of various scenes.

Subjective Evaluation of Image Quality on Digital Image Processing of Chest CR Image (CR 영상의 디지털 영상처리에 관한 주관적 화질 평가)

  • Lee, Yong-Gu;Lee, Won-Seok
    • 전자공학회논문지 IE
    • /
    • v.48 no.1
    • /
    • pp.51-56
    • /
    • 2011
  • In this paper, a variety of digital image processing technique was applied to improve the quality of medical images which is a chest CR image. And the image quality was performed. On the other hand, the high-frequency emphasis filtering and the histogram equalization were realized by MATLAB programs to better the contrast of the chest CR image. As a result of simulation, the sharpness of the original image was elevated by the high-frequency emphasis filtering and the histogram equalization. To evaluate the degree which is improved the image quality by the digital image processing, the subjective evaluation is used by the observation of the image. The sensitivity which is the probability to find a signal or a lesion is calculated. The sensitivity of the image performed the high-frequency emphasis filtering and the histogram equalization became more improved than that of the original and the digital image processing performed in the medical image improved the quality of the image.

Automatic Liver Segmentation of a Contrast Enhanced CT Image Using an Improved Partial Histogram Threshold Algorithm

  • Seo Kyung-Sik;Park Seung-Jin
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.3
    • /
    • pp.171-176
    • /
    • 2005
  • This paper proposes an automatic liver segmentation method using improved partial histogram threshold (PHT) algorithms. This method removes neighboring abdominal organs regardless of random pixel variation of contrast enhanced CT images. Adaptive multi-modal threshold is first performed to extract a region of interest (ROI). A left PHT (LPHT) algorithm is processed to remove the pancreas, spleen, and left kidney. Then a right PHT (RPHT) algorithm is performed for eliminating the right kidney from the ROI. Finally, binary morphological filtering is processed for removing of unnecessary objects and smoothing of the ROI boundary. Ten CT slices of six patients (60 slices) were selected to evaluate the proposed method. As evaluation measures, an average normalized area and area error rate were used. From the experimental results, the proposed automatic liver segmentation method has strong similarity performance as the MSM by medical Doctor.

Spatial Histograms for Region-Based Tracking

  • Birchfield, Stanley T.;Rangarajan, Sriram
    • ETRI Journal
    • /
    • v.29 no.5
    • /
    • pp.697-699
    • /
    • 2007
  • Spatiograms are histograms augmented with spatial means and covariances to capture a richer description of the target. We present a particle filtering framework for region-based tracking using spatiograms. Unlike mean shift, the framework allows for non-differentiable similarity measures to compare two spatiograms; we present one such similarity measure, a combination of a recent weighting scheme and histogram intersection. Experimental results show improved performance with the new measure as well as the importance of global spatial information for tracking. The performance of spatiograms is compared with color histograms and several texture histogram methods.

  • PDF

Contrast Enhancement for Segmentation of Hippocampus on Brain MR Images

  • Sengee, Nyamlkhagva;Sengee, Altansukh;Adiya, Enkhbolor;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.12
    • /
    • pp.1409-1416
    • /
    • 2012
  • An image segmentation result depends on pre-processing steps such as contrast enhancement, edge detection, and smooth filtering etc. Especially medical images are low contrast and contain some noises. Therefore, the contrast enhancement and noise removal techniques are required in the pre-processing. In this study, we present an extension by a novel histogram equalization in which both local and global contrast is enhanced using neighborhood metrics. When checking neighborhood information, filters can simultaneously improve image quality. Most important is that original image information can be used for both global brightness preserving and local contrast enhancement, and image quality improvement filtering. Our experiments confirmed that the proposed method is more effective than other similar techniques reported previously.

A Gray Image to Pseudocoloring Conversion and Enhancement Using FWT and CIT (FWT-CIT를 적용한 그레이 영상의 의사컬러 변환 및 향상)

  • Ryu Kwang-ryol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.7
    • /
    • pp.1464-1468
    • /
    • 2004
  • The color conversion and color enhancement on gray image is presented in this paper. The pseudocoloring for RCB color components extraction from gray image is used the 2D U(Fast Wavelet Transform) for fille. bank and re-array. The each post processing is used the median filtering for noise reduction and the discrete color histogram equalization for CIT(Color Intensity Transformation). The experiment result has enhanced pseudocoloring image as PSNR 30dB over compared the processing of normal wavelet transform.

Image Enhancement Algorithm and its Application in Image Defogging

  • Jun Cao
    • Journal of Information Processing Systems
    • /
    • v.19 no.4
    • /
    • pp.465-473
    • /
    • 2023
  • An image enhancement algorithm and image defogging method are studied in this paper. The formation of fog and the characteristics of fog image are analyzed, and the fog image is preprocessed by histogram equalization method; then the additive white noise is removed by foggy image attenuation model, the atmospheric scattering physical model is constructed, the image detail characteristics are enhanced by image enhancement method, and the visual effect of defogging image is enhanced by guided filtering method. The proposed method has a good defogging effect on the image. When the number of training iterations is 3,000, the peak signal-to-noise ratio of the proposed method is 43.29 dB and the image structure similarity is 0.9616, indicating excellent image defogging effect.

Fast Histogram Extraction Scheme for Histogram-based Image Processing (히스토그램 기반 영상 처리를 위한 압축영역에서의 고속 히스토그램 추출 기법)

  • Park, Jun-Hyung;Eom, Min-Young;Choe, Yoon-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.21-23
    • /
    • 2006
  • Due to development of Internet network environments and data compression techniques, the size and amount of multimedia data has greatly increased. They are compressed before transmission or storage. Dealing with these compressed data such as video retrieval or indexing requires the decoding procedure most of the time. In video retrieval and indexing a color histogram is one of the most frequently used tools. We propose a novel scheme for extracting color histograms from images transformed into the compressed domain using $8{times}8$ DCT(Discrete Cosine Transform). In this scheme an averaged version of original image is obtained by filtering DCT coefficients with a filter we destined.

  • PDF