• Title/Summary/Keyword: histogram analysis

Search Result 491, Processing Time 0.028 seconds

Development of RMRD and Moving Phantom for Radiotherapy in Moving Tumors

  • Lee, S.;Seong, Jin-Sil;Chu, Sung-Sil;Yoon, Won-Sup;Yang, Dae-Sik;Choi, Myung-Sun;Kim, Chul-Yong
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.63-63
    • /
    • 2003
  • Purpose: Planning target volume (PTV) for tumors in abdomen or thorax includes enough margin for breathing-related movement of tumor volumes during treatment. We developed a simple and handy method, which can reduce PTV margins in patients with moving tumors, respiratory motion reduction device system (RMRDs). Materials and Methods: The patients clinical database was structured for moving tumor patients and patient setup error measurement and immobilization device effects were investigated. The system is composed of the respiratory motion reduction device utilized in prone position and abdominal presser (strip device) utilized in the supine position, moving phantom and the analysis program, which enables the analysis on patients setup reproducibility. It was tested for analyzing the diaphragm movement and CT volume differences from patients with RMRDs, the magnitude of PTV margin was determined and dose volume histogram (DVH) was computed using a treatment planning software. Dose to normal tissue between patients with RMRDs and without RMRDs was analyzed by comparing the fraction of the normal liver receiving to 50% of the isocenter dose(TD50). Results: In case of utilizing RMRDs, which was personally developed in our hospital, the value was reduced to $5pm1.4 mm$, and in case of which the belt immobilization device was utilized, the value was reduced to 3$pm$0.9 mm. Also in case of which the strip device was utilized, the value was proven to reduce to $4pm.3 mm$0. As a result of analyzing the TD50 is irradiated in DVH according to the radiation treatment planning, the usage of the respiratory motion reduction device can create the reduce of 30% to the maximum. Also by obtaining the digital image, the function of comparison between the standard image, automated external contour subtraction, and etc were utilized to develop patients setup reproducibility analysis program that can evaluate the change in the patients setup. Conclusion: Internal organ motion due to breathing can be reduced using RMRDs, which is simple and easy to use in clinical setting. It can reduce the organ motion-related PTV margin, thereby decrease volume of the irradiated normal tissue.

  • PDF

Development of Respiratory Motion Reduction Device System (RMRDs) for Radiotherapy in Moving Tumor: Construction of RMRDs and Patient Setup Verification Program

  • Lee, Suk;Chu, Sung-Sil;Lee, Sei-Byung;Jino Bak;Cho, Kwang-Hwan;Kwon, Soo-Il;Jinsil Seong;Lee, Chang-Geol;Suh, Chang-Ok
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.86-89
    • /
    • 2002
  • The purpose is to develop a system to reduce the organ movement from the respiration during the 3DCRT or IMRT. This research reports the experience of utilizing personally developed system for mobile tumors. The patients clinical database was structured for 10 mobile tumors and patient setup error measurement and immobilization device effects were investigated. The RMRD system is composed of the respiratory motion reduction device utilized in prone position and abdominal strip device(ASD) utilized in the supine position, and the analysis program, which enables the analysis on patients setup reproducibility. Dose to normal tissue between patients with RMRDs and without RMRDs was analyzed by comparing the normal tissue volume, field margins and dose volume histogram(DVH) using fluoroscopy and CT images. And, reproducibility of patients setup verify by utilization of digital images. When patients breathed freely, average movement of diaphragm was 1.2 cm in prone position in contrast to 1.6 cm in supine position. In prone position, difference in diaphragm movement with and without RMRDs was 0.5 cm and 1.2 cm, respectively, showing that PTV margins could be reduced to as much as 0.7 cm. With RMRDs, volume of the irradiated normal tissue (lung, liver) reduced up to 20 % in DVH analysis. Also by obtaining the digital image, reproducibility of patients setup verify by visualization using the real-time image acquisition, leading to practical utilization of our software. Internal organ motion due to breathing can be reduced using RMRDs, which is simple and easy to use in clinical setting. It can reduce the organ motion-related PTV margin, thereby decrease volume of the irradiated normal tissue.

  • PDF

Evaluating Correlation between Geometrical Relationship and Dose Difference Caused by Respiratory Motion Using Statistical Analysis

  • Shin, Dong-Seok;Kang, Seong-Hee;Kim, Dong-Su;Kim, Tae-Ho;Kim, Kyeong-Hyeon;Cho, Min-Seok;Noh, Yu-Yoon;Yoon, Do-Kun;Suh, Tae Suk
    • Progress in Medical Physics
    • /
    • v.27 no.4
    • /
    • pp.203-212
    • /
    • 2016
  • Dose differences between three-dimensional (3D) and four-dimensional (4D) doses could be varied according to the geometrical relationship between a planning target volume (PTV) and an organ at risk (OAR). The purpose of this study is to evaluate the correlation between the overlap volume histogram (OVH), which quantitatively shows the geometrical relationship between the PTV and OAR, and the dose differences. 4D computed tomography (4DCT) images were acquired for 10 liver cancer patients. Internal target volume-based treatment planning was performed. A 3D dose was calculated on a reference phase (end-exhalation). A 4D dose was accumulated using deformation vector fields between the reference and other phase images of 4DCT from deformable image registration, and dose differences between the 3D and 4D doses were calculated. An OVH between the PTV and selected OAR (duodenum) was calculated and quantified on the basis of specific overlap volumes that corresponded to 10%, 20%, 30%, 40%, and 50% of the OAR volume overlapped with the expanded PTV. Statistical analysis was performed to verify the correlation with the OVH and dose difference for the OAR. The minimum mean dose difference was 0.50 Gy from case 3, and the maximum mean dose difference was 4.96 Gy from case 2. The calculated range of the correlation coefficients between the OVH and dose difference was from -0.720 to -0.712, and the R-square range for regression analysis was from 0.506 to 0.518 (p-value <0.05). However, when the 10% overlap volume was applied in the six cases that had OVH value ${\leq}2$, the average percent mean dose differences were $34.80{\pm}12.42%$. Cases with quantified OVH values of 2 or more had mean dose differences of $29.16{\pm}11.36%$. In conclusion, no significant statistical correlation was found between the OVH and dose differences. However, it was confirmed that a higher difference between the 3D and 4D doses could occur in cases that have smaller OVH value.

A Study on the Analysis of the Resistance Characteristics and Damage Patterns of Brass Fittings Type CSST (황동이음쇠형 금속플렉시블호스(CSST)의 저항 특성 및 소손 패턴 해석에 관한 연구)

  • Lee, Jang-Woo;Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.30 no.5
    • /
    • pp.67-73
    • /
    • 2016
  • This paper examined the structure, fire resistance of brass fittings type CSST employed in gas appliances and the reliability verification. Brass fittings of type CSST consisted of cladding, tubing, nut, clamp ring, socket, and ball valve. The applicable JIA standard regulates the maximum working pressure to be 4.2 kPa, which is the highest pressure of the relevant standards and the KS D 3625 stipulates the maximum pressure to be 3.24 kPa. With a normal product, the average resistance within the confidence interval was found to be $7.36m{\Omega}$. The average resistance within the confidence interval was $6.67m{\Omega}$ after the fire resistance tests. The analysis indicated that the AD was 1.584 and the standard deviation was 0.3972 with respect of a normal product. Compared to the normal product, however, the damaged product after the fire resistance test showed better features, such as an AD of 1.145 and a standard deviation of 0.2467. Moreover, the average resistance of the normal product was $7.359m{\Omega}$ and the standard deviation in histogram analysis was 0.3972. The average resistance of the damaged product after the fire resistance test in the histogram was $6.67m{\Omega}$ and the standard deviation was 0.2467.

T2 Mapping with and without Fat-Suppression to Predict Treatment Response to Intravenous Glucocorticoid Therapy for Thyroid-Associated Ophthalmopathy

  • Linhan Zhai;Qiuxia Wang;Ping Liu;Ban Luo;Gang Yuan;Jing Zhang
    • Korean Journal of Radiology
    • /
    • v.23 no.6
    • /
    • pp.664-673
    • /
    • 2022
  • Objective: To evaluate the performance of baseline clinical characteristics and pretherapeutic histogram parameters derived from T2 mapping of the extraocular muscles (EOMs) in the prediction of treatment response to intravenous glucocorticoid (IVGC) therapy for active and moderate-to-severe thyroid-associated ophthalmopathy (TAO) and to investigate the effect of fat-suppression (FS) in T2 mapping in this prediction. Materials and Methods: A total of 79 patients clinically diagnosed with active, moderate-to-severe TAO (47 female, 32 male; mean age ± standard deviation, 46.1 ± 10 years), including 43 patients with a total of 86 orbits in the responsive group and 36 patients with a total of 72 orbits in the unresponsive group, were enrolled. Baseline clinical characteristics and pretherapeutic histogram parameters derived from T2 mapping with FS (i.e., FS T2 mapping) or without FS (i.e., conventional T2 mapping) of EOMs were compared between the two groups. Independent predictors of treatment response to IVGC were identified using multivariable analysis. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the predictive performance of the prediction models. Differences between the models were examined using the DeLong test. Results: Compared to the unresponsive group, the responsive group had a shorter disease duration, lower kurtosis (FS-kurtosis), lower standard deviation, larger 75th, 90th, and 95th (FS-95th) T2 relaxation times in FS mapping and lower kurtosis in conventional T2 mapping. Multivariable analysis revealed that disease duration, FS-95th percentile, and FS-kurtosis were independent predictors of treatment response. The combined model, integrating all identified predictors, had an optimized area under the ROC curve of 0.797, 88.4% sensitivity, and 62.5% specificity, which were significantly superior to those of the imaging model (p = 0.013). Conclusion: An integrated combination of disease duration, FS-95th percentile, and FS-kurtosis was a potential predictor of treatment response to IVGC in patients with active and moderate-to-severe TAO. FS T2 mapping was superior to conventional T2 mapping in terms of prediction.

Analysis of the Degree of Fatigue Damage in Truss Railway Bridge by Actual Stress and Simulation (실측응력 및 시뮬레이션에 의한 트러스 철도교의 피로피해도 분석)

  • Jung, Young-Hwa;Kim, Ik-Gyeom;Kim, Ji-Hun;Kim, eun-sung
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.149-158
    • /
    • 2000
  • After measuring actual stress by two measurements(Dynamic Strain Meter, Histogram Recorder) on truss rail road bridge, we could perform time history analysis by 3-D beam element method on modelling bridge. And then, after analyzing bridge structure in static by 3-D modelling, we estimated degree of fatigue damage in main member, secondary member of tie zone, cutting area of base metal cross section for confirming the result. In case that the simulated stress is carried out on modeling bridge, most of those simulation mainly is performed by main members. But in real bridge fatigue damage problems generally caused by junctions, connections, joints in which especially local stress is activated. Therefore, in this paper actual stress on critical area was estimated through the analysis result by simulation. With this study, we can estimate the degree of fatigue damage from a safety point of view and comparative accuracy.

  • PDF

Traversable Region Detection Algorithm using Lane Information and Texture Analysis (차로 수 정보와 텍스쳐 분석을 활용한 주행가능영역 검출 알고리즘)

  • Hwang, Sung Soo;Kim, Do Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.6
    • /
    • pp.979-989
    • /
    • 2016
  • Traversable region detection is an essential step for advanced driver assistance systems and self-driving car systems, and it has been conducted by detecting lanes from input images. The performance can be unreliable, however, when the light condition is poor or there exist no lanes on the roads. To solve this problem, this paper proposes an algorithm which utilizes the information about the number of lanes and texture analysis. The proposed algorithm first specifies road region candidates by utilizing the number of lanes information. Among road region candidates, the road region is determined as the region in which texture is homogeneous and texture discontinuities occur around its boundaries. Traversable region is finally detected by dividing the estimated road region with the number of lanes information. This paper combines the proposed algorithm with a lane detection-based method to construct a system, and simulation results show that the system detects traversable region even on the road with poor light conditions or no lanes.

Bilateral Symmetry Averaging and Simple Regression Analysis for Robust Face Detection Against Illumination Variation (조명 변화에 강인한 얼굴 검출을 위한 좌우대칭 평균화와 단순회귀분석 보정기법)

  • Cho, Chi-Young;Kim, Soo-Hwan
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.12
    • /
    • pp.21-28
    • /
    • 2006
  • In a face detection system based on template matching, histogram equalization or log transform is applied to an input image for the intensity normalization and the image improvement. It is known that they are noneffective in improving an image with intensity distortion by illumination variation. In this paper, we propose an efficient image improvement method using a simple regression analysis combined with a bilateral symmetry average for images with intensity distortion by illumination variation. Experimental results show that our method delivers the detection performance better than previous methods and also remarkably reduces the number of face candidates.

  • PDF

Comparisons of Estimation Methods of Instantaneous Frequency and Examples of its Application to Beam, Engine Block, and Car Door Vibration (순간 진동수 추정 방법론의 비교와 외팔보, 엔진 블록 및 자동차 문 진동에 의 적용예)

  • 박연규;김양한
    • Journal of KSNVE
    • /
    • v.3 no.4
    • /
    • pp.341-352
    • /
    • 1993
  • Although a frequency analysis by FFT algorithm has been widely used in the vibration community, this approach has somewhat limited features when an analysist want to see the details of frequency trends because FFT shows only energy contents along frequencies. So the concept of instantaneous frequency that represents the dominant frequency component at each time needs to be introduced. In this paper, to get the instantaneous frequency, two methods are used. Methods using Hilbert transform and evolutionary spectrum are those. One of the problems of estimating instantaneous frequency using Hilbert transform is that it is normally very sensitive to signal to noise ratio(SNR) because of the differentiation. Moving window is applied on the estimation of instantaneous frequency, and instantaneous frequency histogram are used to handle this problem and proved to be very effective. Computer simulations for various signals have been done to understand the characteristics of instantaneous frequency. The usefulness of signal analysis using instantaneous frequency was tested by three simple experiments, which were engine experiment, beam experiment, and car door experiment. The instantaneous frequency analysis is found to be a useful technique to analyze the signals that have time varying frequencies.

  • PDF

Determination of Leaf Color and Health State of Lettuce using Machine Vision (기계시각을 이용한 상추의 엽색 및 건강상태 판정)

  • Lee, J.W.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.4
    • /
    • pp.256-262
    • /
    • 2007
  • Image processing systems have been used to measure the plant parameters such as size, shape and structure of plants. There are yet some limited applications for evaluating plant colors due to illumination conditions. This study was focused to present adaptive methods to analyze plant leaf color regardless of illumination conditions. Color patches attached on the calibration bars were selected to represent leaf colors of lettuces and to test a possibility of health monitoring of lettuces. Repeatability of assigning leaf colors to color patches was investigated by two-tailed t-test for paired comparison. It resulted that there were no differences of assignment histogram between two images of one lettuce that were acquired at different light conditions. It supported that use of the calibration bars proposed for leaf color analysis provided color constancy, which was one of the most important issues in a video color analysis. A health discrimination equation was developed to classify lettuces into one of two classes, SOUND group and POOR group, using the machine vision. The classification accuracy of the developed health discrimination equation was 80.8%, compared to farmers' decision. This study could provide a feasible method to develop a standard color chart for evaluating leaf colors of plants and plant health monitoring system using the machine vision.