• Title/Summary/Keyword: histogram analysis

Search Result 491, Processing Time 0.031 seconds

Circle Detection Using Its Maximal Symmetry Property

  • Koo, Ja Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.6
    • /
    • pp.21-28
    • /
    • 2016
  • Circle detection has long been studied as one of fundamental image processing applications. It is used in divers areas including industrial inspection, medial image analysis, radio astronomy data analysis, and other object recognition applications. The most widely used class of circle detection techniques is the circle Hough transform and its variants. Management of 3 dimensional parameter histogram used in these methods brings about spatial and temporal overheads, and a lot of studies have dealt the problem. This paper proposes a robust circle detection method using maximal symmetry property of circle. The basic idea is that if perpendicular bisectors of pairs of edges are accumulated in image space, center of circle is determined to be the location of highest accumulation. However, directly implementing the idea in image space requires a lot of calculations. The method of this paper reduces the number of calculations by mapping the perpendicular bisectors into parameter space, selecting small number of parameters, and mapping them inversely into image space. Test on 22 images shows the calculations of the proposed method is 0.056% calculations of the basic idea. The test images include simple circles, multiple circles with various sizes, concentric circles, and partially occluded circles. The proposed method detected circles in various situations successfully.

Regional Projection Histogram Matching and Linear Regression based Video Stabilization for a Moving Vehicle (영역별 수직 투영 히스토그램 매칭 및 선형 회귀모델 기반의 차량 운행 영상의 안정화 기술 개발)

  • Heo, Yu-Jung;Choi, Min-Kook;Lee, Hyun-Gyu;Lee, Sang-Chul
    • Journal of Broadcast Engineering
    • /
    • v.19 no.6
    • /
    • pp.798-809
    • /
    • 2014
  • Video stabilization is performed to remove unexpected shaky and irregular motion from a video. It is often used as preprocessing for robust feature tracking and matching in video. Typical video stabilization algorithms are developed to compensate motion from surveillance video or outdoor recordings that are captured by a hand-help camera. However, since the vehicle video contains rapid change of motion and local features, typical video stabilization algorithms are hard to be applied as it is. In this paper, we propose a novel approach to compensate shaky and irregular motion in vehicle video using linear regression model and vertical projection histogram matching. Towards this goal, we perform vertical projection histogram matching at each sub region of an input frame, and then we generate linear regression model to extract vertical translation and rotation parameters with estimated regional vertical movement vector. Multiple binarization with sub-region analysis for generating the linear regression model is effective to typical recording environments where occur rapid change of motion and local features. We demonstrated the effectiveness of our approach on blackbox videos and showed that employing the linear regression model achieved robust estimation of motion parameters and generated stabilized video in full automatic manner.

Model-Based Object Recognition using PCA & Improved k-Nearest Neighbor (PCA와 개선된 k-Nearest Neighbor를 이용한 모델 기반형 물체 인식)

  • Jung Byeong-Soo;Kim Byung-Gi
    • The KIPS Transactions:PartB
    • /
    • v.13B no.1 s.104
    • /
    • pp.53-62
    • /
    • 2006
  • Object recognition techniques using principal component analysis are disposed to be decreased recognition rate when lighting change of image happens. The purpose of this thesis is to propose an object recognition technique using new PCA analysis method that discriminates an object in database even in the case that the variation of illumination in training images exists. And the object recognition algorithm proposed here represents more enhanced recognition rate using improved k-Nearest Neighbor. In this thesis, we proposed an object recognition algorithm which creates object space by pre-processing and being learned image using histogram equalization and median filter. By spreading histogram of test image using histogram equalization, the effect to change of illumination is reduced. This method is stronger to change of illumination than basic PCA method and normalization, and almost removes effect of illumination, therefore almost maintains constant good recognition rate. And, it compares ingredient projected test image into object space with distance of representative value and recognizes after representative value of each object in model image is made. Each model images is used in recognition unit about some continual input image using improved k-Nearest Neighbor in this thesis because existing method have many errors about distance calculation.

Segmentation of Multispectral MRI Using Fuzzy Clustering (퍼지 클러스터링을 이용한 다중 스펙트럼 자기공명영상의 분할)

  • 윤옥경;김현순;곽동민;김범수;김동휘;변우목;박길흠
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.333-338
    • /
    • 2000
  • In this paper, an automated segmentation algorithm is proposed for MR brain images using T1-weighted, T2-weighted, and PD images complementarily. The proposed segmentation algorithm is composed of 3 step. In the first step, cerebrum images are extracted by putting a cerebrum mask upon the three input images. In the second step, outstanding clusters that represent inner tissues of the cerebrum are chosen among 3-dimensional(3D) clusters. 3D clusters are determined by intersecting densely distributed parts of 2D histogram in the 3D space formed with three optimal scale images. Optimal scale image is made up of applying scale space filtering to each 2D histogram and searching graph structure. Optimal scale image best describes the shape of densely distributed parts of pixels in 2D histogram and searching graph structure. Optimal scale image best describes the shape of densely distributed parts of pixels in 2D histogram. In the final step, cerebrum images are segmented using FCM algorithm with its initial centroid value as the outstanding clusters centroid value. The proposed cluster's centroid accurately. And also can get better segmentation results from the proposed segmentation algorithm with multi spectral analysis than the method of single spectral analysis.

  • PDF

MRI Predictors of Malignant Transformation in Patients with Inverted Papilloma: A Decision Tree Analysis Using Conventional Imaging Features and Histogram Analysis of Apparent Diffusion Coefficients

  • Chong Hyun Suh;Jeong Hyun Lee;Mi Sun Chung;Xiao Quan Xu;Yu Sub Sung;Sae Rom Chung;Young Jun Choi;Jung Hwan Baek
    • Korean Journal of Radiology
    • /
    • v.22 no.5
    • /
    • pp.751-758
    • /
    • 2021
  • Objective: Preoperative differentiation between inverted papilloma (IP) and its malignant transformation to squamous cell carcinoma (IP-SCC) is critical for patient management. We aimed to determine the diagnostic accuracy of conventional imaging features and histogram parameters obtained from whole tumor apparent diffusion coefficient (ADC) values to predict IP-SCC in patients with IP, using decision tree analysis. Materials and Methods: In this retrospective study, we analyzed data generated from the records of 180 consecutive patients with histopathologically diagnosed IP or IP-SCC who underwent head and neck magnetic resonance imaging, including diffusion-weighted imaging and 62 patients were included in the study. To obtain whole tumor ADC values, the region of interest was placed to cover the entire volume of the tumor. Classification and regression tree analyses were performed to determine the most significant predictors of IP-SCC among multiple covariates. The final tree was selected by cross-validation pruning based on minimal error. Results: Of 62 patients with IP, 21 (34%) had IP-SCC. The decision tree analysis revealed that the loss of convoluted cerebriform pattern and the 20th percentile cutoff of ADC were the most significant predictors of IP-SCC. With these decision trees, the sensitivity, specificity, accuracy, and C-statistics were 86% (18 out of 21; 95% confidence interval [CI], 65-95%), 100% (41 out of 41; 95% CI, 91-100%), 95% (59 out of 61; 95% CI, 87-98%), and 0.966 (95% CI, 0.912-1.000), respectively. Conclusion: Decision tree analysis using conventional imaging features and histogram analysis of whole volume ADC could predict IP-SCC in patients with IP with high diagnostic accuracy.

A Study on Geotechnical Lineament Analysis by Image Processing Method (영상사진을 이용한 지반공학적인 선구조분석 연구)

  • 이수곤;금동헌
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.593-600
    • /
    • 2000
  • Most of ground investigations can be grasped geological distribution which like rock name, geological structure, soil condition, underwater condition, land slide, ground cave-in, ground collapse by geological survey. But geological survey is limited to part region geological structure, not wide region. Therefore, Image Processing Method must need to grasp wide region geological structure. The object of this research is presented analysis data of geotechnical engineering in first step investigation.

  • PDF

The Scene Analysis and Keyframe Extraction for Content-Based Indexing on Compressed Image Sequence (압축된 영상 시퀀스에서 내용 기반 색인을 위한 장면 분석 및 키 프레임 추출)

  • 오상헌;김상렬;김주도;이근영
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.605-608
    • /
    • 1999
  • In this paper, we proposed several scene analysis algorithms. These algorithms using image difference and histogram operate on the sequence of DC coefficient which is extracted from Motion JPEG or MPEG without full-frame decompression. Since DC sequence has the most information of full frame while it has reduced data. Experimental results show less than 1/64 of full frame analysing complexity and exactly analyze scene changes and extract key frames.

  • PDF

Robustness of Face Recognition to Variations of Illumination on Mobile Devices Based on SVM

  • Nam, Gi-Pyo;Kang, Byung-Jun;Park, Kang-Ryoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.1
    • /
    • pp.25-44
    • /
    • 2010
  • With the increasing popularity of mobile devices, it has become necessary to protect private information and content in these devices. Face recognition has been favored over conventional passwords or security keys, because it can be easily implemented using a built-in camera, while providing user convenience. However, because mobile devices can be used both indoors and outdoors, there can be many illumination changes, which can reduce the accuracy of face recognition. Therefore, we propose a new face recognition method on a mobile device robust to illumination variations. This research makes the following four original contributions. First, we compared the performance of face recognition with illumination variations on mobile devices for several illumination normalization procedures suitable for mobile devices with low processing power. These include the Retinex filter, histogram equalization and histogram stretching. Second, we compared the performance for global and local methods of face recognition such as PCA (Principal Component Analysis), LNMF (Local Non-negative Matrix Factorization) and LBP (Local Binary Pattern) using an integer-based kernel suitable for mobile devices having low processing power. Third, the characteristics of each method according to the illumination va iations are analyzed. Fourth, we use two matching scores for several methods of illumination normalization, Retinex and histogram stretching, which show the best and $2^{nd}$ best performances, respectively. These are used as the inputs of an SVM (Support Vector Machine) classifier, which can increase the accuracy of face recognition. Experimental results with two databases (data collected by a mobile device and the AR database) showed that the accuracy of face recognition achieved by the proposed method was superior to that of other methods.

Text Region Extraction using Pattern Histogram of Character-Edge Map in Natural Images (문자-에지 맵의 패턴 히스토그램을 이용한 자연이미지에서의 텍스트 영역 추출)

  • Park, Jong-Cheon;Hwang, Dong-Guk;Lee, Woo-Ram;Kwon, Kyo-Hyun;Jun, Byoung-Min
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.11a
    • /
    • pp.220-224
    • /
    • 2006
  • The text to be included in the natural images has many important information in the natural image. Therefore, if we can extract the text in natural images, It can be applied to many important applications. In this paper, we propose a text region extraction method using pattern histogram of character-edge map. We extract the edges with the Canny edge detector and creates 16 kind of edge map from an extracted edges. And then we make a character-edge map of 8 kinds that have a character feature with a combination of an edge map. We extract text region using 8 kinds of character-edge map and 16 kind of edge map. Verification of text candidate region uses analysis of a character-edge map pattern histogram and structural feature of text region. The method to propose experimented with various kind of the natural images. The proposed approach extracted text region from a natural images to have been composed of a complex background, various letters, various text colors effectively.

  • PDF

A Study on Image Binarization using Intensity Information (밝기 정보를 이용한 영상 이진화에 관한 연구)

  • 김광백
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.3
    • /
    • pp.721-726
    • /
    • 2004
  • The image binarization is applied frequently as one part of the preprocessing phase for a variety of image processing techniques such as character recognition and image analysis, etc. The performance of binarization algorithms is determined by the selection of threshold value for binarization, and most of the previous binarization algorithms analyze the intensity distribution of the original images by using the histogram and determine the threshold value using the mean value of Intensity or the intensity value corresponding to the valley of the histogram. The previous algorithms could not get the proper threshold value in the case that doesn't show the bimodal characteristic in the intensity histogram or for the case that tries to separate the feature area from the original image. So, this paper proposed the novel algorithm for image binarization, which, first, segments the intensity range of grayscale images to several intervals and calculates mean value of intensity for each interval, and next, repeats the interval integration until getting the final threshold value. The interval integration of two neighborhood intervals calculates the ratio of the distances between mean value and adjacent boundary value of two intervals and determine as the threshold value of the new integrated interval the intensity value that divides the distance between mean values of two intervals according to the ratio. The experiment for performance evaluation of the proposed binarization algorithm showed that the proposed algorithm generates the more effective threshold value than the previous algorithms.