• 제목/요약/키워드: histidine kinase

검색결과 32건 처리시간 0.026초

Crystal Structure of the Pneumococcal Vancomycin-Resistance Response Regulator DNA-Binding Domain

  • Park, Sang-Sang;Lee, Sangho;Rhee, Dong-Kwon
    • Molecules and Cells
    • /
    • 제44권3호
    • /
    • pp.179-185
    • /
    • 2021
  • Vancomycin response regulator (VncR) is a pneumococcal response regulator of the VncRS two-component signal transduction system (TCS) of Streptococcus pneumoniae. VncRS regulates bacterial autolysis and vancomycin resistance. VncR contains two different functional domains, the N-terminal receiver domain and C-terminal effector domain. Here, we investigated VncR C-terminal DNA binding domain (VncRc) structure using a crystallization approach. Crystallization was performed using the micro-batch method. The crystals diffracted to a 1.964 Å resolution and belonged to space group P212121. The crystal unit-cell parameters were a = 25.71 Å, b = 52.97 Å, and c = 60.61 Å. The structure of VncRc had a helix-turn-helix motif highly similar to the response regulator PhoB of Escherichia coli. In isothermal titration calorimetry and size exclusion chromatography results, VncR formed a complex with VncS, a sensor histidine kinase of pneumococcal TCS. Determination of VncR structure will provide insight into the mechanism by how VncR binds to target genes.

Effect of Mutations of Five Conserved Histidine Residues in the Catalytic Subunit of the cbb3 Cytochrome c Oxidase on its Function

  • Oh Jeong-Il
    • Journal of Microbiology
    • /
    • 제44권3호
    • /
    • pp.284-292
    • /
    • 2006
  • The cbb3 cytochrome c oxidase has the dual function as a terminal oxidase and oxygen sensor in the photosynthetic bacterium, Rhodobacter sphaeroides. The cbb3 oxidase forms a signal transduction pathway together with the PrrBA two-component system that controls photosynthesis gene expression in response to changes in oxygen tension in the environment. Under aerobic conditions the cbb3 oxidase generates an inhibitory signal, which shifts the equilibrium of PrrB kinase/phosphatase activities towards the phosphatase mode. Photosynthesis genes are thereby turned off under aerobic conditions. The catalytic subunit (CcoN) of the R. sphaeroides cbb3 oxidase contains five histidine residues (H2l4, B233, H303, H320, and H444) that are conserved in all CcoN subunits of the cbb3 oxidase, but not in the catalytic subunits of other members of copper-heme superfamily oxidases. H214A mutation of CcoN affected neither catalytic activity nor sensory (signaling) function of the cbb3 oxidase, whereas H320A mutation led to almost complete loss of both catalytic activity and sensory function of the cbb3 oxidase. H233V and H444A mutations brought about the partial loss of catalytic activity and sensory function of the cbb3 oxidase. Interestingly, the H303A mutant form of the cbb3 oxidase retains the catalytic function as a cytochrome c oxidase as compared to the wild-type oxidase, while it is defective in signaling function as an oxygen sensor. H303 appears to be implicated in either signal sensing or generation of the inhibitory signal to the PrrBA two-component system.

유기용매 내성 세균 Pseudomonas sp. BCNU106 균주에서 차별적으로 상향 발현되는 유전자군의 톨루엔 내성과의 연관성 (Differentially Up-expressed Genes Involved in Toluene Tolerance in Pseudomonas sp. BCNU106)

  • 주우홍;배윤위;김다솜;김동완
    • 생명과학회지
    • /
    • 제30권1호
    • /
    • pp.88-95
    • /
    • 2020
  • 유기용매 내성 세균인 Pseudomonas sp. BCNU 106을 10%(v/v) 톨루엔에 노출시킨 후 8시간 동안 random arbitrarily primed polymerase chain reaction (RAP-PCR)기법을 이용하여 메신져 RNA 발현 레벨을 조사하였다. 총 100개의 상향발현된 발현 산물 중에서 50개의 상보적인 단편들이 반복적으로 재현성있게 발현되는 것으로 확인되어, 이들을 클로닝을 하였으며 나아가 유전자 염기서열을 결정하였다. Blast analysis 결과, 톨루엔은 LysR family transcriptional regulator 그리고 RNA polymerase factor sigma-32같은 전사와 관련된 유전자들의 발현 레벨을 적응적으로 증가시키는 것으로 확인되었다. 그리고 톨루엔 스트레스 존재 하에서 inorganic ion 수송과 대사와 관련된 catalase와 Mn2+/Fe2+ transporter 유전자의 발현이 증가되었으며, 신호전달과 대사와 기능적으로 관련된 type IV pilus assembly PilZ와 multi-sensor signal transduction histidine kinase 유전자들의 발현 증가도 확인되었다. 한편 톨루엔 노출 후 탄수화물 수송과 대사와 관련된 beta-hexosaminidase 유전자발현 레벨이 증가하였다. 나아가 DNA polymerase III subunit epsilon, DNA-3-methyladenine glycosylase II와 DEAD/DEAH box helicase domain-containing 유전자들과 같은 DNA 복제, 재조합 그리고 수복에 관련성이 있는 유전자들의 발현 레벨 그리고 심지어는 ABC transporter 유전자와 같은 방어 메커니즘에 관련성이 있는 유전자들의 발현 레벨이 적응적으로 증가되는 것으로 밝혀졌다. 특히 10% 톨루엔 존재하에서 ABC transportor, Mn2+/Fe2+ transporter 및 β-hexosaminidase 유전자에 해당하는 RNA들이 괄목하게 유도되는 것이 확인되었다. 그러므로 유기용매 내성 세균 Pseudomonas sp. BCNU 106이 유기용매에 대하여 내성을 나타내는데 있어서 방어 메커니즘, 세포내 이온 항상성 그리고 바이오 필름 형성이 필수적인 것으로 확인되었다.

흰쥐의 적출심장에서 HTK 심정지액과 DelNido 심정지액의 심근보호효과비교 (Comparison of Cardioprotection between Histidine-Tryptophan-Ketoglutarate Cardioplegia and DelNido Cardioplegia in Isolated Rat Hearts)

  • 공준혁;김대현;장봉현
    • Journal of Chest Surgery
    • /
    • 제36권11호
    • /
    • pp.799-811
    • /
    • 2003
  • 배경: 본 연구에서는 심정지액 중 비교적 최근에 임상에 소개된 HTK 심정지액과 DelNido 심정지액의 심근보호효과를 비교하고자 하였다. 이를 위하여 적출 쥐의 심장을 사용한 동물실험을 통하여 혈류역학적 심기능검사, 생화학적 대사물질검사 및 심근미세구조의 변화를 비교 관찰하여 그 성적을 보고하는 바이다. 대상 및 방법: 심정지액 투여방법을 기준으로 흰쥐 수컷 79마리를 세 군으로 나누어서 실험하였다. 제1군(28마리)에서는 DelNido 심정지액을 1차 주입 후 40분 간격으로 2차, 3차 주입을 하였고, 제2군(27마리)에서는 HTK 심정지액을 1차례만 주입하였으며, 제3군(24마리)에서는 HTK 심정지액을 DeINido 심정지액과 같은 방법으로 3차례 주입하였다. 혈류역학적 심기능검사로 심박동수, 좌심실내압, 심근수축력(+dp/dt max), 분당 관 관류량 및 심부담값을 각 군에서 허혈전과 재관류후 15분, 30분 및 45분에 측정하여 비교하였다. 생화학적 대사물질검사로는 aspartate aminotransferase (AST), lactate dehydrogenase (LD), creatine kinase (CK), creatine kinase-MB (CK-MB), troponin-I, myoglobin, lactate를 허혈 전과 재관류 45분 후에 관 관류액을 취하여 측정하였다. 심근미세구조검사는 혈류역학적 심기능검사에서 비교적 중간값을 보인 실험 3예에서 재관류 45분 후 심첨부에서 좌심실 심근의 일부를 생검하여 전자현미경으로 관찰하였다. 결과: 혈류역학적 심기능검사상 재관류 후 좌심실 내압, 분당 관 관류량, 심부담값의 감소율 비교 시 통계학적 유의성은 없었으나, 재관류 후 심박동수의 감소율이 대조군(제1군)보다 실험군(제2군과 제3군)에서 유의하게 낮았다. 생화학적 대사물질 검사상 재관류 후 AST, LD, CK, CK-MB, troponin-I, myoglobin의 증가율 비교 시 통계학적 유의성은 없었으나, 재관류 후 lactate치의 증가율이 대조군보다 실험군에서 유의하게 낮았다 심근미세구조검사상 제1군, 제2군, 제3군에서 사립체 점수는 2.14$\pm$0.10, 1.52$\pm$0.57, 2.10$\pm$0.16으로 관찰되었다. 결론: 이상의 흰쥐의 적출심장을 이용한 실험결과를 종합해보면, 심근보호측면에서 정질성 심정지액인 HTK용액은, 혈성 심정지액인 DelNido용액과 비교 시, 혈류역학적 심기능검사상 심박동수의 감소율에서 그리고 생화학적 대사물질검사상 lactate의 증가율에서 우수한 성적을 보였다.

넙치에서 분리된 phosphoinositide 3-kinase γ 유전자의 클로닝 및 특성 연구 (Cloning and Characterization of Phosphoinositide 3-Kinase γ cDNA from Flounder (Paralichthys olivaceus))

  • 정태혁;윤주연;지근호;서용배;김영태
    • 생명과학회지
    • /
    • 제24권4호
    • /
    • pp.343-351
    • /
    • 2014
  • Phosphoinositide 3-kinase (PI3K)는 항산화 제어반응, 심근세포 성장, 및 세포 내 특수반응 뿐만 아니라 세포분화, 생장, 운동, 식균 및 내항작용, 세포 골격유지에 관여하는 등 세포 신호체계에서 핵심 역할을 하는 효소이다. PI3K는 세 그룹으로 나누어지며 type I PI3K는 leukocyte에서 우선적으로 발현되고 G-proteins의 ${\beta}{\gamma}$ subunits에 의해서 활성화 된다. 본 연구에서는 넙치(Paralichthys olivaceus)의 $PI3K{\gamma}$를 암호화하는 cDNA를 클로닝하였다. 넙치의 $PI3K{\gamma}$는 1,341 bp 염기로 구성되는 한 개의 ORF를 가지며 이 단백질은 447 아미노산으로 구성되어있다. $PI3K{\gamma}$는 zebrafish의 $PI3K{\gamma}$와 89.6%, mouse와는 84.7%, Norway rat와는 84%, human의 $PI3K{\gamma}$와는 74.9%가 아미노산 상동성을 나타내었다. $PI3K{\gamma}$유전자의 대장균에서 발현을 위하여 pET-44a(+)-PI3K 재조합 DNA를 구축하여 대장균에서 발현시킨 결과 49 kDa의 재조합 단백질이 과발현 됨을 확인 할 수 있었다. His-tag affinity chromatography를 이용하여 $PI3K{\gamma}$단백질을 순순 분리하였으며 wortmannin을 이용하여 $PI3K{\gamma}$의 활성을 분석하였다.

NDP Kinases Suppressed Bax-Dependent Apoptosis in Yeast System

  • K. C. Hwang;D. W. Ok;D. N. Kwon;H. K. Shin;Kim, J. H.
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2001년도 춘계학술발표대회
    • /
    • pp.52-52
    • /
    • 2001
  • Many nucleoside diphosphate (NDP) kinases are ubiquitous enzymes responsible for the exchange of ${\gamma}$-phosphates between tri- and diphosphonucleosides. The catalytic Many nucleoside diphosphate (NDP) kinases are ubiquitous enzymes responsible for the exchange of ${\gamma}$-phosphates between tri- and diphosphonucleosides. The catalytic reaction follows a ping-pong mechanism in which the enzyme is transiently phosphorylated on a histidine residue conserved in all nucleoside diphosphate kinases. Beside their role in nucleotide synthesis, these enzymes present additional functions, possibly independent of catalysis, in processes such as differentiation, cell growth, tumor progression, metastasis and development. To clone murine nm23-M5, several expressed sequence tags (ESTs) of the GenBank data base, selected according to their homology to nm23-H5 cDNA, reconstituted a complete open reading frame (GenBank AF222750). To test whether murine NDPKs (1, 2, 3, 4, 5, and 6) can inhibit Bax-mediated toxicity in yeast, co-transformation was performed respectively. The yeast S.cerevisiae was transformed with a copy expression plasmid containing the histidine selection marker and expressing murine Bax under the control of a galactose-inducible promoter. Several clones were selected and found to be growth inhibited when Bax expression was induced with galactose. A representative clone was transformed again with a copy expression plasmid containing the tryptophane selection marker and expressing either murine Bcl-xL or NDPK under the control of a galactose-inducible promoter. Several subclones of the double-transformants were selected and characterized. The ability of Bcl-xL and NDPKs to suppress Bax-mediated toxicity was determined by growing yeast cells overnight in galactose media and spot-testing on galactose plates starting with an equal number of yeast cells as determined by taking the OD$_{600}$. Ten-fold serial dilutions were used in the spot-test. Plates were grown at 3$0^{\circ}C$ for 2-3 days. All murine NDPKs suppressed Bax dependent apoptosis. Futher study will be peformed whether Bax-toxicity inhibition was caused by NDP kinase activity or additional function.n.

  • PDF

Molecular Cloning and Expression of Human Dihydrolipoamide Dehydrogenase-Binding Protein in Excherichia coli

  • Lee, Jeong-Min;Ryou, Chong-Suk;Kwon, Moo-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권4호
    • /
    • pp.592-597
    • /
    • 2001
  • The pyruvate dehydrogenase complex (PDC) catalyzes the oxidative decarboxylation of pyruvate with the formation of $CO_2$, acetyl-CoA, NADH, and H+. This complex contains multiple copies of three catalytic components including pyruvate dehydrogenase(E1), dihydrolipoamide acetyltransferase(E2), and dihydrolipoamide dehydrogenase (E3). Two regulatory components (E1-kinase and phospho-E1 phosphatase) and functionally less-understood protein (protein X, E3BP) are also involved in the formation of the complex. In this study, cloning and characterization of a gene for human E3BP have been carried out. A cDNA encoding the human E3BP was isolated by database search and cDNA library screening. The primary structure of E3BP has some similar characteristics with that of E2 in the lipoyl domain and the carboxyl-terminal domain, based on the nucleotide sequence and the deduced amino acid sequence. However, the conserved amino acid moiety including the histidine residue for acetyltransferase activity in E2 is not conserved in the case of human E3BP. The human E3BP was expressed and purified in E. coli. The molecular weight of the protein, excluding the mitochondrial target sequence, was about 50 kDa as determined by SDS-PAGE. Cloning of human E3BP and expression of the recombinant E3BP will facilitate the understanding of the role(s) of E3BP in mammalian PDC.

  • PDF

A PAS-Containing Histidine Kinase is Required for Conidiation, Appressorium Formation, and Disease Development in the Rice Blast Fungus, Magnaporthe oryzae

  • Shin, Jong-Hwan;Gumilang, Adiyantara;Kim, Moon-Jong;Han, Joon-Hee;Kim, Kyoung Su
    • Mycobiology
    • /
    • 제47권4호
    • /
    • pp.473-482
    • /
    • 2019
  • Rice blast disease, caused by the ascomycete fungus Magnaporthe oryzae, is one of the most important diseases in rice production. PAS (period circadian protein, aryl hydrocarbon receptor nuclear translocator protein, single-minded protein) domains are known to be involved in signal transduction pathways, but their functional roles have not been well studied in fungi. In this study, targeted gene deletion was carried out to investigate the functional roles of the PAS-containing gene MoPAS1 (MGG_02665) in M. oryzae. The deletion mutant ΔMopas1 exhibited easily wettable mycelia, reduced conidiation, and defects in appressorium formation and disease development compared to the wild type and complemented transformant. Exogenous cAMP restored appressorium formation in ΔMopas1, but the shape of the restored appressorium was irregular, indicating that MoPAS1 is involved in sensing the hydrophobic surface. To examine the expression and localization of MoPAS1 in M. oryzae during appressorium development and plant infection, we constructed a MoPAS1:GFP fusion construct. MoPAS1:GFP was observed in conidia and germ tubes at 0 and 2 h post-infection (hpi) on hydrophobic cover slips. By 8 hpi, most of the GFP signal was observed in the appressoria. During invasive growth in host cells, MoPAS1:GFP was found to be fully expressed in not only the appressoria but also invasive hyphae, suggesting that MoPAS may contribute to disease development in host cells. These results expand our knowledge of the roles of PAS-containing regulatory genes in the plant-pathogenic fungus M. oryzae.

빅벨리해마(Hippocampus abdominalis)에서의 Mitochondrial Heat Shock Protein 75 유전자의 특징과 발현 분석 (Characterization of Mitochondrial Heat Shock Protein 75 (mtHSP75) of the Big-belly Seahorse Hippocampus abdominalis)

  • 고지연;;이숙경;;오민영;이제희
    • 한국수산과학회지
    • /
    • 제48권3호
    • /
    • pp.354-361
    • /
    • 2015
  • Mitochondrial heat shock protein 75 (mtHSP75) is a member of the HSP90 family and plays essential roles in refolding proteins of the mitochondrial matrix. Mitochondria provide energy in the form of ATP and generate reactive oxygen species (ROS). Heat shock proteins (HSPs) are activated in response to stress, and protect cells. In this study, we characterized the mtHSP75 of the big-belly seahorse Hippocampus abdominalis. The protein (BsmtHSP75) is encoded by an open reading frame (ORF) of 2,157 nucleotides, has 719 amino acids (aa), and is of molecular mass 82 kDa. BsmtHSP75 has two functional domains, a histidine kinase-like ATPase (HATPase_c) domain (123-276 aa) and an HSP90 family domain (302-718 aa). BsmtHSP75 was expressed in all tested tissues of healthy seahorses. The ovary contained the highest transcription level, followed (in order) by the blood, brain, and muscle. Pouch tissue showed the lowest expression level. The expression of BsmtHSP75 was significantly (P<0.05) up-regulated on viral or bacterial challenge, suggesting that BsmtHSP75 plays a role in the immune defense against bacterial and viral pathogens.

Cytokinin signaling promotes root secondary growth and bud formation in Panax ginseng

  • Kyoung Rok Geem;Yookyung Lim;Jeongeui Hong;Wonsil Bae;Jinsu Lee;Soeun Han;Jinsu Gil;Hyunwoo Cho;Hojin Ryu
    • Journal of Ginseng Research
    • /
    • 제48권2호
    • /
    • pp.220-228
    • /
    • 2024
  • Background: Panax ginseng, one of the valuable perennial medicinal plants, stores numerous pharmacological substrates in its storage roots. Given its perennial growth habit, organ regeneration occurs each year, and cambium stem cell activity is necessary for secondary growth and storage root formation. Cytokinin (CK) is a phytohormone involved in the maintenance of meristematic cells for the development of storage organs; however, its physiological role in storage-root secondary growth remains unknown. Methods: Exogenous CK was repeatedly applied to P. ginseng, and morphological and histological changes were observed. RNA-seq analysis was used to elucidate the transcriptional network of CK that regulates P. ginseng growth and development. The HISTIDINE KINASE 3 (PgHK3) and RESPONSE REGULATOR 2 (PgRR2) genes were cloned in P. ginseng and functionally analyzed in Arabidopsis as a two-component system involved in CK signaling. Results: Phenotypic and histological analyses showed that CK increased cambium activity and dormant axillary bud formation in P. ginseng, thus promoting storage-root secondary growth and bud formation. The evolutionarily conserved two-component signaling pathways in P. ginseng were sufficient to restore CK signaling in the Arabidopsis ahk2/3 double mutant and rescue its growth defects. Finally, RNA-seq analysis of CK-treated P. ginseng roots revealed that plant-type cell wall biogenesis-related genes are tightly connected with mitotic cell division, cytokinesis, and auxin signaling to regulate CK-mediated P. ginseng development. Conclusion: Overall, we identified the CK signaling-related two-component systems and their physiological role in P. ginseng. This scientific information has the potential to significantly improve the field-cultivation and biotechnology-based breeding of ginseng.